Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Chem Soc Rev ; 52(2): 454-472, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36594823

RESUMO

The design and development of functional materials with real-life applications are highly demanding. Understanding and controlling inter- and intra-molecular interactions provide opportunities to design new materials. A judicious manipulation of the molecular structure significantly alters such interactions and can boost selected properties and functions of the material. There is burgeoning evidence of the beneficial effects of non-covalent interactions (NCIs), showing that manipulating NCIs may generate functional materials with a wide variety of physical properties leading to applications in catalysis, drug delivery, crystal engineering, etc. This prompted us to review the implications of NCIs on the molecular packing, optical properties, and applications of functional π-conjugated materials. To this end, this tutorial review will cover different types of interactions (electrostatic, π-interactions, metallophilic, etc.) and their impact on π-conjugated materials. Attempts have also been made to delineate the effects of weak interactions on opto-electronic (O-E) applications.

2.
Angew Chem Int Ed Engl ; 63(20): e202401552, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38497693

RESUMO

The switching behavior of the novel hybrid material (FA)Na[Fe(CN)5(NO)].H2O (1) in response to temperature (T), light irradiation and electric field (E) is studied using in situ X-ray diffraction (XRD). Crystals of 1 display piezoelectricity, pyroelectricity, second and third harmonic generation. XRD shows that the FA+ are disordered at room-temperature, but stepwise cooling from 273-100 K induces gradual ordering, while cooling under an applied field (E=+40 kVcm-1) induces a sudden phase change at 140 K. Structural-dynamics calculations suggest the field pushes the system into a region of the structural potential-energy surface that is otherwise inaccessible, demonstrating that application of T and E offers an effective route to manipulating the crystal chemistry of these materials. Photocrystallography also reveals photoinduced linkage isomerism, which coexists with but is not correlated to other switching behaviors. These experiments highlight a new approach to in situ studies of hybrid materials, providing insight into the structure-property relationships that underpin their functionality.

3.
Chemistry ; 29(37): e202300376, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37062705

RESUMO

Two novel nona-coordinated Eu(III) complexes [Eu(btfa)3 (Ph-TerPyr)] (Eu-1) and [Eu(NTA)3 (Ph-TerPyr)] (Eu-2) have been synthesized and characterized. The structure of the complexes was elucidated by density functional theory (DFT) methods. The experimental photophysical properties of the complexes were investigated and complemented with theoretical calculations. Effective energy transfer (ET) pathways for the sensitized red luminescence is discussed. The complexes were tested as emitting layers (EML) in organic light emitting diodes (OLEDs). At the optimum doping concentration of 4 wt.%, the double-EML OLEDs of Eu-1 exhibited red electroluminescence (EL) with an EQE of 4.0 % and maximum brightness (B)=1179 cd/m2 , maximum current efficiency (ηc )=5.64 cd/A, and maximum power efficiency (ηp )=4.78 lm/W at the current density (J) of 10 mA/cm2 . Interestingly, the double-EML OLEDs of Eu-2 at the optimum concentration of 3 wt.%, displayed an outstanding EL performance with EQE of 7.32 % and B=838 cd/m2 , ηc =10.19 cd/A and ηp =10.33 lm/W at J=10 mA/cm2 . The EL performance of this device is among the best reported for devices incorporating a europium complex as a red emitter.

4.
Faraday Discuss ; 244(0): 411-433, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37186115

RESUMO

There is a need to develop rapidly responsive chemical sensors for the detection of low concentrations of volatile organic solvents (VOCs). Platinum pincer complexes have shown promise as sensors because of their colours and vapochromic and solvatochromic properties, that may be related to the non-covalent interactions between the pincer complexes and the guest VOCs. Here we report an investigation into a series of Pt(II) complexes based on the 1,3-di(pyridine)benzene tridentate (N⁁C⁁N) skeleton with the formula [Pt(N⁁C(R)⁁N)(CN)] (R = C(O)Me 2, C(O)OEt 3, C(O)OPh 4) with the fourth coordination site occupied by a cyanide ligand. Solid-state samples of the complexes have been tested with a range of volatiles including methanol, ethanol, acetone, dichloromethane and water, and while 2 displays thermochromism, 3 and 4 display rapidly reversible vapochromism and solvatochromism. These results are correlated with X-ray powder and single crystal X-ray structural data including an assessment of the crystal packing and the void space in the crystalline space. The cyanide ligand and the R substituents are involved in hydrogen bonding that creates the voids within the structures and interact with the solvent molecules that influence the Pt⋯Pt separation in the crystalline state.

5.
Molecules ; 27(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35335383

RESUMO

The current discussion on whether scandium, yttrium and lanthanum should represent Group 3 in the Periodic Table or whether lutetium should replace lanthanum in the group has prompted us to further explore the structural chemistry of the Group 3 elements and compare the coordination numbers and coordination geometries adopted. The steric and electronic properties of the coordinated ligands have a major influence on the structures adopted. We report the synthesis and crystal structure determination of an unusual dinuclear scandium complex [(bipy)(NO3)2Sc(µ-OH)2Sc(NO3)2(bipy)] obtained by the reaction of hydrated scandium nitrate with 2,2'-bipyridyl (bipy) in either ethanol or nitromethane. The crystal structure of the complex shows that the scandium centers are eight coordinate, and the structure obtained contrasts with related complexes found in the lanthanide series [Ln(bipy)2(NO3)3] and [Ln(phen)2(NO3)3] (phen = phenanthroline) and in [M(terpy)(NO3)3] (M = Sc, Er-Lu), where these complexes are all mononuclear.


Assuntos
2,2'-Dipiridil , Nitratos , Ligantes , Óxidos de Nitrogênio , Escândio
6.
Inorg Chem ; 60(12): 8665-8671, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34085813

RESUMO

The mononuclear cobalt complex of 3,5-di-tert-butylcathecolate and cyan-pyridine (Co(diox)2(4-CN-py)2) is a very versatile compound that displays valence tautomerism (VT) in the solid state, which is induced by temperature, light, and hard X-rays, and modulated by solvent in the crystal lattice. In our work, we used single crystal X-ray diffraction as a probe for the light-induced VT in solid state and demonstrate the controlled use of hard X-rays via attenuation to avoid X-ray-induced VT interconversion. We report photoinduced VT in benzene solvated crystals of Co(diox)2(4-CN-py)2 illuminated with blue 450 nm light at 30 K with a very high yield (80%) of metastable hs-CoII states, and we also show evidence of the de-excitation of these photoinduced metastable states using red 660 nm light. Such high-yield light-induced VT had never been experimentally observed in molecular crystals of cobalt tautomers, proving that the 450 nm light illumination is triggering a chain of events that leads to the ls-CoIII to hs-CoII interconversion.

7.
Inorg Chem ; 60(2): 745-759, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33382607

RESUMO

Pt(II) diynes and polyynes incorporating 5,5'- and 6,6'-disubstituted 2,2'-bipyridines were prepared following conventional Sonogashira and Hagihara dehydrohalogenation reaction protocols. Using Pt(II) dimers and polymers as a rigid-rod backbone, four new heterobimetallic compounds incorporating Re(CO)3Cl as a pendant functionality in the 2,2'-bipyridine core were obtained. The new heterobimetallic Pt-Re compounds were characterized by analytical and spectroscopic techniques. The solid-state structures of a Re(I)-coordinated diterminal alkynyl ligand and a representative model compound were determined by single-crystal X-ray diffraction. Detailed photophysical characterization of the heterobimetallic Pt(II) diynes and polyynes was carried out. We find that the incorporation of the Re(CO)3Cl pendant functionality in the 2,2'-bipyridine-containing main-chain Pt(II) diynes and polyynes has a synergistic effect on the optical properties, red shifting the absorption profile and introducing strong long-wavelength absorptions. The Re(I) moiety also introduces strong emission into the monomeric Pt(II) diyne compounds, whereas this is suppressed in the polyynes. The extent of the synergy depends on the topology of the ligands. Computational modeling was performed to compare the energetic stabilities of the positional isomers and to understand the microscopic nature of the major optical transitions. We find that 5,5'-disubstituted 2,2'-bipyridine systems are better candidates in terms of yield, photophysical properties, and stability than their 6,6'-substituted counterparts. Overall, this work provides an additional synthetic route to control the photophysical properties of metallaynes for a variety of optoelectronic applications.

8.
Acc Chem Res ; 52(4): 1079-1088, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30916544

RESUMO

The design of solid-state materials whose properties and functions can be manipulated in a controlled manner by the application of light is an important objective in modern materials chemistry. When the material changes property or function, it is helpful if a simple measurable response, such as a change in color, can be detected. Potential applications for such materials are wide ranging, from data storage to smart windows. With the growing emphasis on solid-state materials that have two or more accessible energy states and which exhibit bistability, attention has turned to transition metal complexes that contain ambidentate ligands that can switch between linkage isomeric forms when activated by light. Suitable ligands that show promise in this area include nitrosyls, nitro groups, and coordinated sulfur dioxide molecules, each of which can coordinate to a metal center in more than one bonding mode. A nitrosyl normally coordinates through its N atom (η1-NO) but when photoactivated can undergo isomerism and coordinate through its O atom (η1-ON). At a molecular level, converting between these two configurations can act as an "on/off" switch. The analysis of such materials has been aided by the development of photocrystallographic techniques, which allow the full three-dimensional structure of a single crystal of a complex, under photoactivation, to be determined, when it is in either a metastable or short-lived excited state. The technique effectively brings the dimension of "time" to the crystallographic experiment and brings us closer to being able to watch solid-state processes occur in real time. In this Account, we highlight the advances made in photocrystallography for studying solid-state, photoactivated linkage isomerism and describe the factors that favor the switching process and which allow complete switching between isomers. We demonstrate that control of temperature is key to achieving either a metastable state or an excited state with a specific lifetime. We draw our conclusions from published work on the formation of photoactivated metastable states for nitrosyl and sulfur dioxide complexes and from our own work on photoactivated switching between nitro and nitrito groups. We show that efficient switching between isomers is dependent on the wavelength of light used, on the temperature at which the experiment is carried out, on the flexibility of the crystal lattice, and on both the electronic and steric environment of the ambidentate ligand undergoing isomerism. We have designed and prepared a number of nitro/nitrito isomeric metal complexes that undergo reversible 100% conversion between the two forms at temperatures close to room temperature. Through our fine control over the generation of the metastable states, it should be possible to effectively "dial up" a suitable temperature to give a metastable or an excited state with a desired lifetime.

9.
Chem Rev ; 118(18): 8474-8597, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30112905

RESUMO

Conjugated poly-ynes and poly(metalla-ynes) constitute an important class of new materials with potential application in various domains of science. The key factors responsible for the diverse usage of these materials is their intriguing and tunable chemical and photophysical properties. This review highlights fascinating advances made in the field of conjugated organic poly-ynes and poly(metalla-ynes) incorporating group 4-11 metals. This includes several important aspects of conjugated poly-ynes viz. synthetic protocols, bonding, electronic structure, nature of luminescence, structure-property relationships, diverse applications, and concluding remarks. Furthermore, we delineated the future directions and challenges in this particular area of research.

10.
Phys Chem Chem Phys ; 22(25): 14177-14186, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32609108

RESUMO

Presently, there is little clarity concerning how organic additives control structure formation in the synthesis of zeolite catalysts. Such ambiguity is a major obstacle towards synthesis design of new bespoke zeolites with intended applications. Herein, we have applied inelastic neutron scattering (INS) spectroscopy to experimentally probe the nature of organic-framework interactions, which are crucial in understanding structure direction. With this technique we have studied the dynamics of 18-crown-6 ether, which can be used as an additive to direct the formation of four zeolites: Na-X, EMC-2, RHO and ZK-5. We observed significant softening of the 18-crown-6 ether molecule's dynamics upon occlusion within a zeolite host, with a strong influence on both the circular and radial vibrational modes. Furthermore, there is a strong correlation between the size/geometry of the zeolite framework cages and perturbations in the dynamics of the 18C6 oxyethylene chain. We propose that the approach used herein can be used to study other zeolites, and hence gain a more comprehensive view of organic-framework interactions.

11.
Chem Soc Rev ; 48(23): 5547-5563, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31720563

RESUMO

Square planar platinum(ii) complexes have been known for 150 years and pincer complexes, supported by a tridentate chelating ligand such as terpyridyl, have been known for more than 70 years. The development of cyclometallated platinum(ii) pincer complexes, in which the tridentate ligand forms one or more platinum-carbon bonds, has been much more recent. Particularly, in terms of their solution and solid-state luminescence these cyclometallated complexes show substantial advantages over their terpyridyl analogues. This tutorial review introduces the reader to the area of platinum(ii) cyclometallated pincer chemistry and shows the advantage of having an alkynyl group in the fourth coordination site on the metal. The basic design principles for the preparation of highly luminescent platinum(ii) cyclometallated pincer complexes are outlined and the strategy to improve the luminescence further by chemical manipulation of the pincer ligand and of the auxiliary ligand in the fourth coordination site are illustrated with recent examples from the literature. Recent applications of these cyclometallated pincer complexes in the area of opto-electronics is described, with emphasis on their use in OLEDs, OFETs and as NLO materials as well as demonstrating their potential use as triplet photosensitizers and as metal ion sensors. The aim of this review is to show the recent advances in this rapidly developing research field and to highlight the future promise of these materials.

12.
Molecules ; 25(11)2020 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-32517244

RESUMO

Boron-containing π-conjugated materials are archetypical candidates for a variety of molecular scale applications. The incorporation of boron into the π-conjugated frameworks significantly modifies the nature of the parent π-conjugated systems. Several novel boron-bridged π-conjugated materials with intriguing structural, photo-physical and electrochemical properties have been reported over the last few years. In this paper, we review the properties and multi-dimensional applications of the boron-bridged fused-ring π-conjugated systems. We critically highlight the properties of π-conjugated N^C-chelate organoboron materials. This is followed by a discussion on the potential applications of the new materials in opto-electronics (O-E) and other areas. Finally, attempts will be made to predict the future direction/outlook for this class of materials.


Assuntos
Compostos de Boro/química , Quelantes/química , Complexos de Coordenação/química , Eletrônica , Dispositivos Ópticos , Fotoquímica
13.
Inorg Chem ; 58(13): 8316-8331, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31192588

RESUMO

Two new lanthanide complexes [Ln(hfaa)3(Py-Im)] [hfaa = hexafluoroacetylacetone, Py-Im = 2-(2-pyridyl)benzimidazole and Ln = Eu(III) (1) and Tb(III) (2)] were synthesized and characterized. An X-ray crystal structure determination confirms that complex 1 is eight-coordinate with a distorted trigonal dodecahedral geometry. It shows typical vivid red Eu(III) emission in the solid state, in solution, and in a polymer matrix. The observed lifetime (τobs) of complex 1 in the solid state, in dichloromethane (DCM) solution, and in thin films is 833.01, 837.95, and 626.16-715.69 µs, respectively, with a photoluminescence quantum yield QEuL ≈ 33% in DCM solution. Complex 2 displays a yellowish-green emission in the solid state (τobs ≈ 36.99 µs), while a near white-light emission in solution (x; 0.2574: y; 0.3371) and in thin films. Therefore, it is a potential candidate for generating single-component white light-emitting materials for solid-state lighting applications. The kinetic scheme for modeling energy-transfer processes shows that the main donor state for 1 is the ligand triplet state (T1) and that energy transfer occurs to both the 5D1 (56.55%) and 5D0 (40.58%) levels. We fabricated a series of single- and double-layer organic light-emitting devices using complex 1. The luminance of the optimized double-layer electroluminescence (EL) device was 373 cd/m2 with very low turn-on voltage of ∼4.2 V. Complex 1 was further utilized as a sensitizer to improve the EL of a red-emitting iridium complex PQ2Ir(dpm) (PQ = phenylquinoly-N,C2', dpm = dipivaloylmethane). The codoped device achieved a maximum brightness and maximum current efficiency (ηc) of 93 224 cd/m2 and 36.38 cd/A, respectively.

14.
Molecules ; 24(3)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759754

RESUMO

The roles of organic additives in the assembly and crystallisation of zeolites are still not fully understood. This is important when attempting to prepare novel frameworks to produce new zeolites. We consider 18-crown-6 ether (18C6) as an additive, which has previously been shown to differentiate between the zeolite EMC-2 (EMT) and faujasite (FAU) frameworks. However, it is unclear whether this distinction is dictated by influences on the metastable free-energy landscape or geometric templating. Using high-pressure synchrotron X-ray diffraction, we have observed that the presence of 18C6 does not impact the EMT framework flexibility-agreeing with our previous geometric simulations and suggesting that 18C6 does not behave as a geometric template. This was further studied by computational modelling using solid-state density-functional theory and lattice dynamics calculations. It is shown that the lattice energy of FAU is lower than EMT, but is strongly impacted by the presence of solvent/guest molecules in the framework. Furthermore, the EMT topology possesses a greater vibrational entropy and is stabilised by free energy at a finite temperature. Overall, these findings demonstrate that the role of the 18C6 additive is to influence the free energy of crystallisation to assemble the EMT framework as opposed to FAU.


Assuntos
Zeolitas/química , Éteres de Coroa/química , Cristalização/métodos , Pressão , Temperatura , Difração de Raios X/métodos
15.
Chemistry ; 24(20): 5204-5212, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29112322

RESUMO

A ligand field molecular mechanics (LFMM) force field has been constructed for the spin states of [Fe(bpp)2 ]2+ (bpp=2,6-di(pyrazol-1-yl)pyridine) and related complexes. A new charge scheme is employed which interpolates between partial charges for neutral bpp and protonated [H3 bpp]3+ to achieve a target metal charge. The LFMM angular overlap model (AOM) parameters are fitted to fully ab initio d orbital energies. However, several AOM parameter sets are possible. The ambiguity is resolved by calculating the Jahn-Teller distortion mode for high spin, which indicates that in [Fe(bpp)2 ]2+ pyridine is a π-acceptor and pyrazole a weak π-donor. The alternative fit, assumed previously, where both ligands act as π-donors leads to an inconsistent distortion. LFMM optimisations in the presence of [BF4 ]- or [PF6 ]- anions are in good agreement with experiment and the model also correctly predicts the spin state energetics for 3-pyrazolyl substituents where the interactions are mainly steric. However, for 4-pyridyl or 4-pyrazolyl substituents, LFMM only treats the electrostatic contribution which, for the pyridyl substituents, generates a fair correlation with the spin crossover transition temperatures, T1/2 , but in the reverse sense to the dominant electronic effect. Thus, LFMM generates its smallest spin state energy difference for the substituent with the highest T1/2 . One parameter set for all substituted bpp ligands is insufficient and further LFMM development will be required.

16.
Chemistry ; 24(43): 11094-11102, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29808942

RESUMO

The Mannich reaction of the zirconium MOF [Zr6 O4 (OH)4 (bdc-NH2 )6 ] (UiO-66-NH2 , bdc-NH2 =2-amino-1,4-benzenedicarboxylate) with paraformaldehyde and pyrazole, imidazole or 2-mercaptoimidazole led to post-synthetic modification (PSM) through C-N bond formation. The reaction with imidazole (Him) goes to completion whereas those with pyrazole (Hpyz) and 2-mercaptoimidazole (HimSH) give up to 41 and 36 % conversion, respectively. The BET surface areas for the Mannich products are reduced from that of UiO-66-NH2 , but the compounds show enhanced selectivity for adsorption of CO2 over N2 at 273 K. The thiol-containing MOFs adsorb mercury(II) ions from aqueous solution, removing up to 99 %. The Mannich reaction with pyrazole succeeds on [Zn4 O(bdc-NH2 )3 ] (IRMOF-3), but a similar reaction on [Zn2 (bdc-NH2 )2 (dabco)] (dabco=1,4-diazabicyclo[2.2.2]octane) gave [Zn3 (bdc-NH2 )1.32 (bdc-NHCH2 pyz)1.68 (dabco)]⋅2 C7 H8 5, whereas the reaction with imidazole gave the expected PSM product. Compound 5 forms via a dissolution-recrystallisation process that is triggered by the "free" pyrazolate nitrogen atom competing with dabco for coordination to the zinc(II) centre. In contrast, the "free" nitrogen atom on the imidazolate is too far away to compete in this way. Mannich reactions on [In(OH)(bdc-NH2 )] (MIL-68(In)-NH2 ) stop after the first step, and the product was identified as [In(OH)(bdc-NH2 )0.41 (bdc-NHCH2 OCH3 )0.30 (bdc-N=CH2 )0.29 ], with addition of the heterocycle prevented by steric interactions.

20.
Inorg Chem ; 57(9): 4959-4965, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29648455

RESUMO

The uptake of gaseous iodine into the crystalline sponge material [(ZnI2)3(tpt)2]·0.7triphenylene·0.3PhNO2·0.7C6H12 1 (tpt = 2,4,6-tris(4-pyridyl)-1,3,5-triazine) has been monitored by dynamic X-ray diffraction and thermogravimetric analysis. The X-ray analyses have enabled the location, quantity, uptake rate, and subsequent chemistry of the iodine upon inclusion into the pores to be determined. An uptake of 6.0 wt % (0.43 I2 per formula unit) was observed crystallographically over a period of 90 min before crystal degradation occurred. The included iodine molecules interact with the iodine atoms of the ZnI2 nodes at three different sites, forming coordinated I3- ions. The results contrast to recent observations on [(ZnI2)3(tpt)2] without the triphenylene guests which show the presence of I42- ions with low quantities of absorbed iodine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA