Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Theor Appl Genet ; 136(3): 38, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36897431

RESUMO

KEY MESSAGE: rAMP-seq based genomic selection for agronomic traits has been shown to be a useful tool for winter wheat breeding programs by increasing the rate of genetic gain. Genomic selection (GS) is an effective strategy to employ in a breeding program that focuses on optimizing quantitative traits, which results in the ability for breeders to select the best genotypes. GS was incorporated into a breeding program to determine the potential for implementation on an annual basis, with emphasis on selecting optimal parents and decreasing the time and costs associated with phenotyping large numbers of genotypes. The design options for applying repeat amplification sequencing (rAMP-seq) in bread wheat were explored, and a low-cost single primer pair strategy was implemented. A total of 1870 winter wheat genotypes were phenotyped and genotyped using rAMP-seq. The optimization of training to testing population size showed that the 70:30 ratio provided the most consistent prediction accuracy. Three GS models were tested, rrBLUP, RKHS and feed-forward neural networks using the University of Guelph Winter Wheat Breeding Program (UGWWBP) and Elite-UGWWBP populations. The models performed equally well for both populations and did not differ in prediction accuracy (r) for most agronomic traits, with the exception of yield, where RKHS performed the best with an r = 0.34 and 0.39 for each population, respectively. The ability to operate a breeding program where multiple selection strategies, including GS, are utilized will lead to higher efficiency in the program and ultimately lead to a higher rate of genetic gain.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Fenótipo , Genótipo , Genômica/métodos , Seleção Genética , Modelos Genéticos
2.
Theor Appl Genet ; 135(7): 2515-2530, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35716202

RESUMO

KEY MESSAGE: Identifying QTL associated with soybean seed quality traits from a diverse GWAS panel cultivated in Canadian and Ukrainian mega-environments may facilitate future cultivar development for foreign markets. Understanding the complex genetic basis of seed quality traits for soybean in the mega-environments (MEs) is critical for developing a marker-assisted selection program that will lead to breeding superior cultivars adapted to specific regions. This study aimed to analyze the accumulation of 14 soybean seed quality traits in Canadian ME and two seed quality traits in Ukrainian ME and identify associated ME specific quantitative trait loci (QTLSP) and ME universal QTL (QTLU) for protein and oil using a genome-wide association study (GWAS) panel consisting of 184 soybean genotypes. The panel was planted in three locations in Canada and two locations in Ukraine in 2018 and 2019. Genotype plus genotype-by-environment biplot analysis was conducted to assess the accumulation of individual seed compounds across different locations. The protein accumulation was high in the Canadian ME and low in the Ukrainian ME, whereas the oil concentration showed the opposite trends between the two MEs. No QTLU were identified across the MEs for protein and oil concentrations. In contrast, nine Canadian QTLSP for protein were identified on various chromosomes, which were co-located with QTL controlling other traits identified in the Canadian ME. The lack of common QTLU for protein and oil suggests that it may be necessary to use QTLSP associated with these traits separately for the Canadian and Ukrainian ME. Additional Ukrainian data for seed compounds other than oil and protein are required to identify novel QTLSP and QTLU for such traits for the individual or combined Canadian and Ukrainian MEs.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Canadá , Melhoramento Vegetal , Sementes , Glycine max/genética
3.
Theor Appl Genet ; 135(4): 1375-1383, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35112143

RESUMO

KEY MESSAGE: Significant QTL for sucrose concentration have been identified using a historical soybean genomic panel, which could aid in the development of food-grade soybean cultivars. Soybean (Glycine max (L.) Merr) is a crop of global importance for both human and animal consumption, which was domesticated in China more than 6000 years ago. A concern about losing genetic diversity as a result of decades of breeding has been expressed by soybean researchers. In order to develop new cultivars, it is critical for breeders to understand the genetic variability present for traits of interest in their program germplasm. Sucrose concentration is becoming an increasingly important trait for the production of soy-food products. The objective of this study was to use a genome-wide association study (GWAS) to identify putative QTL for sucrose concentration in soybean seed. A GWAS panel consisting of 266 historic and current soybean accessions was genotyped with 76 k genotype-by-sequencing (GBS) SNP data and phenotyped in four field locations in Ontario (Canada) from 2015 to 2017. Seven putative QTL were identified on chromosomes 1, 6, 8, 9, 10, 13 and 14. A key gene related to sucrose synthase (Glyma.06g182700) was found to be associated with the QTL located on chromosome 6. This information will facilitate efforts to increase the available genetic variability for sucrose concentration in soybean breeding programs and develop new and improved high-sucrose soybean cultivars suitable for the soy-food industry.


Assuntos
Estudo de Associação Genômica Ampla , Glycine max , Ontário , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes/genética , Glycine max/genética , Sacarose
4.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628351

RESUMO

A genome-wide association study (GWAS) is currently one of the most recommended approaches for discovering marker-trait associations (MTAs) for complex traits in plant species. Insufficient statistical power is a limiting factor, especially in narrow genetic basis species, that conventional GWAS methods are suffering from. Using sophisticated mathematical methods such as machine learning (ML) algorithms may address this issue and advance the implication of this valuable genetic method in applied plant-breeding programs. In this study, we evaluated the potential use of two ML algorithms, support-vector machine (SVR) and random forest (RF), in a GWAS and compared them with two conventional methods of mixed linear models (MLM) and fixed and random model circulating probability unification (FarmCPU), for identifying MTAs for soybean-yield components. In this study, important soybean-yield component traits, including the number of reproductive nodes (RNP), non-reproductive nodes (NRNP), total nodes (NP), and total pods (PP) per plant along with yield and maturity, were assessed using a panel of 227 soybean genotypes evaluated at two locations over two years (four environments). Using the SVR-mediated GWAS method, we were able to discover MTAs colocalized with previously reported quantitative trait loci (QTL) with potential causal effects on the target traits, supported by the functional annotation of candidate gene analyses. This study demonstrated the potential benefit of using sophisticated mathematical approaches, such as SVR, in a GWAS to complement conventional GWAS methods for identifying MTAs that can improve the efficiency of genomic-based soybean-breeding programs.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Estudo de Associação Genômica Ampla/métodos , Desequilíbrio de Ligação , Aprendizado de Máquina , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Glycine max/genética
5.
Plant Biotechnol J ; 19(2): 324-334, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32794321

RESUMO

Here, we describe a worldwide haplotype map for soybean (GmHapMap) constructed using whole-genome sequence data for 1007 Glycine max accessions and yielding 14.9 million variants as well as 4.3 M tag single-nucleotide polymorphisms (SNPs). When sampling random subsets of these accessions, the number of variants and tag SNPs plateaued beyond approximately 800 and 600 accessions, respectively. This suggests extensive coverage of diversity within the cultivated soybean. GmHapMap variants were imputed onto 21 618 previously genotyped accessions with up to 96% success for common alleles. A local association analysis was performed with the imputed data using markers located in a 1-Mb region known to contribute to seed oil content and enabled us to identify a candidate causal SNP residing in the NPC1 gene. We determined gene-centric haplotypes (407 867 GCHs) for the 55 589 genes and showed that such haplotypes can help to identify alleles that differ in the resulting phenotype. Finally, we predicted 18 031 putative loss-of-function (LOF) mutations in 10 662 genes and illustrated how such a resource can be used to explore gene function. The GmHapMap provides a unique worldwide resource for applied soybean genomics and breeding.


Assuntos
Glycine max , Melhoramento Vegetal , Estudo de Associação Genômica Ampla , Genômica , Genótipo , Haplótipos/genética , Polimorfismo de Nucleotídeo Único/genética , Glycine max/genética
6.
Bioinformatics ; 35(17): 3160-3162, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668828

RESUMO

MOTIVATION: Reduced-representation sequencing is a genome-wide scanning method for simultaneous discovery and genotyping of thousands to millions of single nucleotide polymorphisms that is used across a wide range of species. However, in this method a reproducible but very small fraction of the genome is captured for sequencing, while the resulting reads are typically aligned against the entire reference genome. RESULTS: Here we present a skinny reference genome approach in which a simplified reference genome is used to decrease computing time for data processing and to increase single nucleotide polymorphism counts and accuracy. A skinny reference genome can be integrated into any reduced-representation sequencing analytical pipeline. AVAILABILITY AND IMPLEMENTATION: https://bitbucket.org/jerlar73/SRG-Extractor. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma , Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Software
7.
Theor Appl Genet ; 133(6): 1967-1976, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32193569

RESUMO

KEY MESSAGE: Identification of marker-trait associations and trait-associated haplotypes in breeding germplasm identifies regions under selection and highlights changes in haplotype diversity over decades of soybean improvement in Canada. Understanding marker-trait associations using genome-wide association in soybean is typically carried out in diverse germplasm groups where identified loci are often not applicable to soybean breeding efforts. To address this challenge, this study focuses on defining marker-trait associations in breeding germplasm and studying the underlying haplotypes in these regions to assess genetic change through decades of selection. Phenotype data were generated for 175 accessions across multiple environments in Ontario, Canada. A set of 76,549 SNPs were used in the association analysis. A total of 23 genomic regions were identified as significantly associated with yield (5), days to maturity (5), seed oil (3), seed protein (5) and 100-seed weight (5), of which 14 are novel. Each significant region was haplotyped to assess haplotype diversity of the underlying genomic region, identifying ten regions with trait-associated haplotypes in the breeding germplasm. The range of genomic length for these regions (7.2 kb to 6.8 Mb) indicates variation in regional LD for the trait-associated regions. Six of these regions showed changes between eras of breeding, from historical to modern and experimental soybean accessions. Continued selection on these regions may necessitate introgression of novel parental genetic diversity as some haplotypes were fixed within the breeding germplasm. This finding highlights the importance of studying associations and haplotype diversity at a breeding program scale to understand breeders' selections and trends in soybean improvement over time. The haplotypes may also be used as a tool for selection of parental germplasm to inform breeder's decisions on further soybean improvement.


Assuntos
Genoma de Planta , Glycine max/genética , Haplótipos , Canadá , Estudos de Associação Genética , Marcadores Genéticos , Genótipo , Desequilíbrio de Ligação , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes
8.
Theor Appl Genet ; 133(2): 665-676, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31822937

RESUMO

KEY MESSAGE: We explored the genetic basis of SNF-related traits through GWAS and identified 40 candidate genes. This study provides fundamental insights into SNF-related traits and will accelerate efforts for SNF breeding. Symbiotic nitrogen fixation (SNF) increases sustainability by supplying biological nitrogen for crops to enhance yields without damaging the ecosystem. A better understanding of this complex biological process is critical for addressing the triple challenges of food security, environmental degradation, and climate change. Soybean plants, the most important legume worldwide, can form a mutualistic interaction with specialized soil bacteria, bradyrhizobia, to fix atmospheric nitrogen. Here we report a comprehensive genome-wide association study of 11 SNF-related traits using 79K GBS-derived SNPs in 297 African soybeans. We identified 25 QTL regions encompassing 40 putative candidate genes for SNF-related traits including 20 genes with no prior known role in SNF. A line with a large deletion (164 kb), encompassing a QTL region containing a strong candidate gene (CASTOR), exhibited a marked decrease in SNF. This study performed on African soybean lines provides fundamental insights into SNF-related traits and yielded a rich catalog of candidate genes for SNF-related traits that might accelerate future efforts aimed at sustainable agriculture.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Glycine max/genética , Fixação de Nitrogênio/genética , Simbiose/genética , Biomassa , Estudo de Associação Genômica Ampla , Genótipo , Fixação de Nitrogênio/fisiologia , Fenótipo , Filogenia , Melhoramento Vegetal , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Nódulos Radiculares de Plantas/genética , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Simbiose/fisiologia
9.
Plant J ; 96(6): 1218-1227, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30246271

RESUMO

Domestication is an important key co-evolutionary process through which humans have extensively altered the genomic make-up and appearance of both plants and animals. The identification of domestication-related genes remains very arduous. In this study, we present a systematic analytical approach that harnesses two recent advances in genomics, whole-genome sequencing (WGS) and prediction of loss-of-function (LOF) mutations, to greatly facilitate the assembly of an enriched catalogue of domestication-related candidate genes. Using WGS data for 296 cultivated (Glycine max) and 64 wild soybean accessions, we identified 8699 LOF variants, and 116 genes that are uniquely fixed for one or more LOF allele(s) in domesticated soybeans. Existing soybean transcriptomic data led us to overcome analytical challenges associated with whole-genome duplications and to identify neo- or subfunctionalized genes. This systematic approach allowed us to identify 110 candidate domestication-related genes in an efficient and rapid way. This catalogue contains previously well characterized domestication genes in soybean, as well as some orthologs from other domesticated crop species. In addition, it comprises many promising candidate domestication genes. Overall, this collection of candidate domestication-related genes in soybean is almost twice as large as the sum of all previously reported candidate genes in all other crops. We believe this systematic approach could readily be used in wide range of species.


Assuntos
Domesticação , Genes de Plantas/genética , Glycine max/genética , Mutação com Perda de Função/genética , Frequência do Gene/genética , Genes de Plantas/fisiologia , Genoma de Planta/genética , Mutação com Perda de Função/fisiologia , Sequenciamento Completo do Genoma
10.
Theor Appl Genet ; 132(11): 3089-3100, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31384959

RESUMO

KEY MESSAGE: Genetic diversity in Canadian soybean is maintained over decades of selection in two public breeding programs. Breeders have used a portion of the genetic diversity available in germplasm collections. Both public and private breeding efforts have been critical for the development of soybean cultivars grown around the world. Global genetic diversity of soybean has been well characterized; however, this diversity is not well studied at the breeding program scale. The objective of this study was to characterize genetic diversity over decades of breeding in two public soybean breeding programs at the University of Guelph, Canada. To address this objective, a pedigree-related panel combining 296 soybean accessions from the Ridgetown and Guelph Campus breeding programs was studied. The accessions were genotyped using genotyping-by-sequencing, imputed using the GmHapMap reference genotypes resulting in more than 3.8M SNPs, further filtered to 77k SNPs. Population structure analysis did not identify structure between the breeding programs and historical germplasm. The linkage disequilibrium decay ranged from 400 to 600 kb on average in euchromatic regions. Nucleotide diversity over decades of breeding shows that historical accessions had the highest nucleotide diversity, with significant decreases corresponding to the initial breeding activity in Canada; however, genetic diversity has increased in the last 20 years in both breeding programs. Maturity gene E2 was nearly fixed for e2 in Ridgetown accessions, while unfixed in Guelph accessions. Comparison of the breeding programs to the USDA germplasm collection reveals that breeders have only used a portion of the available genetic diversity, allowing future breeders to exploit this untapped resource. The approach used in this study may be of interest to other breeding programs for evaluating changes in genetic diversity resulting from breeding activities.


Assuntos
Variação Genética , Genética Populacional , Glycine max/genética , Melhoramento Vegetal , Canadá , Genótipo , Desequilíbrio de Ligação , Linhagem , Polimorfismo de Nucleotídeo Único
11.
Plant Biotechnol J ; 16(3): 749-759, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28869792

RESUMO

Next-generation sequencing (NGS) and bioinformatics tools have greatly facilitated the characterization of nucleotide variation; nonetheless, an exhaustive description of both SNP haplotype diversity and of structural variation remains elusive in most species. In this study, we sequenced a representative set of 102 short-season soya beans and achieved an extensive coverage of both nucleotide diversity and structural variation (SV). We called close to 5M sequence variants (SNPs, MNPs and indels) and noticed that the number of unique haplotypes had plateaued within this set of germplasm (1.7M tag SNPs). This data set proved highly accurate (98.6%) based on a comparison of called genotypes at loci shared with a SNP array. We used this catalogue of SNPs as a reference panel to impute missing genotypes at untyped loci in data sets derived from lower density genotyping tools (150 K GBS-derived SNPs/530 samples). After imputation, 96.4% of the missing genotypes imputed in this fashion proved to be accurate. Using a combination of three bioinformatics pipelines, we uncovered ~92 K SVs (deletions, insertions, inversions, duplications, CNVs and translocations) and estimated that over 90% of these were accurate. Finally, we noticed that the duplication of certain genomic regions explained much of the residual heterozygosity at SNP loci in otherwise highly inbred soya bean accessions. This is the first time that a comprehensive description of both SNP haplotype diversity and SV has been achieved within a regionally relevant subset of a major crop.


Assuntos
Glycine max/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biologia Computacional , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos/genética , Polimorfismo de Nucleotídeo Único/genética
12.
Theor Appl Genet ; 131(10): 2157-2165, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30051334

RESUMO

Key message Significant QTL for soyasaponin I, as the major component of the soyasaponin B, have been identified using an RIL soybean population, which could facilitate the development of functional food soybean cultivars. Soyasaponin B forms that are naturally found in soybean (Glycine max [L.] Merr.) seed, have been of interest to the food industry because of their functional food properties. The predominant form soyasaponin B is soyasaponin I. While some of the genes in the biosynthesis of soyasaponins have been characterized, the underlying genetics of soyasaponins as a quantitative trait is still poorly understood. The objective of this study was to identify quantitative trait loci (QTL) associated with the accumulation of soyasaponin I using a genetic mapping population. The population consisting of 186 F4:7 recombinant inbred lines derived from the cross of 'OAC Glencoe' and 'OAC Wallace' was grown in two Southern Ontario locations in 2015 and 2016. The concentration of soyasaponin I was determined using high-performance liquid chromatography. Putative QTL associated with the accumulation of soyasaponin I were identified through simple interval mapping and composite interval mapping on chromosomes 10 and 16, which explained up to 11% of the total phenotypic variation per QTL for the trait. A significant positive correlation was observed between soyasaponin I and seed protein concentration in the mapping population, which may be advantageous for the development of soybean lines with improved soyasaponin I profiles. QTL identified in this study may facilitate marker-assisted selection for the development of food-grade soybean lines with improved functional properties.


Assuntos
Glycine max/genética , Ácido Oleanólico/análogos & derivados , Locos de Características Quantitativas , Saponinas/análise , Sementes/química , Mapeamento Cromossômico , Ácido Oleanólico/análise , Ontário , Fenótipo , Glycine max/química
14.
Plant Biotechnol J ; 13(2): 211-21, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25213593

RESUMO

Soya bean is a major source of edible oil and protein for human consumption as well as animal feed. Understanding the genetic basis of different traits in soya bean will provide important insights for improving breeding strategies for this crop. A genome-wide association study (GWAS) was conducted to accelerate molecular breeding for the improvement of agronomic traits in soya bean. A genotyping-by-sequencing (GBS) approach was used to provide dense genome-wide marker coverage (>47,000 SNPs) for a panel of 304 short-season soya bean lines. A subset of 139 lines, representative of the diversity among these, was characterized phenotypically for eight traits under six environments (3 sites × 2 years). Marker coverage proved sufficient to ensure highly significant associations between the genes known to control simple traits (flower, hilum and pubescence colour) and flanking SNPs. Between one and eight genomic loci associated with more complex traits (maturity, plant height, seed weight, seed oil and protein) were also identified. Importantly, most of these GWAS loci were located within genomic regions identified by previously reported quantitative trait locus (QTL) for these traits. In some cases, the reported QTLs were also successfully validated by additional QTL mapping in a biparental population. This study demonstrates that integrating GBS and GWAS can be used as a powerful complementary approach to classical biparental mapping for dissecting complex traits in soya bean.


Assuntos
Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem/métodos , Glycine max/genética , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Análise de Sequência de DNA/métodos , Cromossomos de Plantas/genética , Genoma de Planta , Desequilíbrio de Ligação/genética , Tamanho do Órgão , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes , Sementes/genética
15.
Theor Appl Genet ; 127(1): 211-29, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24141573

RESUMO

Genotyping through the pedigrees of elite soybean [Glycine max (L.) Merr.] cultivars developed by a breeding program represents an opportunity to explore and characterize various molecular and genetic changes that are a direct result of long-term selection by soybean breeders. For soybeans bred for Ontario Canada, one such elite cultivar was OAC Bayfield, which had exceptional commercial success as well as being a parent of a number of successful cultivars developed by multiple independent breeding programs. A total of 42 genotypes from six different breeding programs, comprising the multi-generational pedigree of OAC Bayfield were genotyped with molecular markers and chromosomal inheritance was tracked throughout the pedigree. Cluster analysis showed high congruence with the known pedigree and identified three distinct ancestral groups. The ancestral genotypes contained the majority of the rare alleles, with the cultivar CNS having the greatest number of unique alleles. The graphical genotype profile for the 20 chromosomes revealed conserved allelic composition which has been assembled in certain chromosomes in the form of specific linkage blocks, which were either a result of recombination involving ancestral linkage blocks or linkage blocks introduced from the cultivar Fiskeby-V. The identification of highly structured, conserved genomic regions are important for future breeding efforts as they are indicators of preferentially selected regions, or conversely, may be a contributing factor to low genetic gains due to mass fixation across a breeding program's germplasm.


Assuntos
Genótipo , Glycine max/genética , Cruzamento , Canadá , Cromossomos de Plantas , Análise por Conglomerados , Variação Genética , Repetições de Microssatélites , Filogenia
16.
Plant Methods ; 20(1): 14, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267941

RESUMO

BACKGROUND: The potential of plant-based sources of vernolic acid to provide agricultural producers with a market diversification opportunity and industrial manufacturers with a renewable, environmentally friendly chemical feedstock is immense. The herbaceous wild spurge or caper spurge (Euphorbia lagascae Spreng) is the most promising source of vernolic acid, containing an average oil content of 50%, of which around 60% is vernolic acid. Its seed yield ranges between 500 and 2000 kg ha-1, and a theoretical yield of 180 kg ha-1 of pure vernolic acid is possible. The objective of this research was to characterize the flower and whole plant morphology so to allow for the development of a method to efficiently hybridize E. lagasce plants for breeding purposes. RESULTS: In this study, we have characterized the flower and whole plant morphology in detail, thereby, developing an efficient method for hybridization of E. lagasce to allow for its breeding and improvement as a novel oil crop. Such method was not described previously in the literature making it difficult to breed this crop. We believe that the method will be of great value to plant breeders working on optimizing the crop, particularly in terms of the development of non-shattering cultivars with enhanced germination potential. CONCLUSIONS: The successful development of this crop through plant breeding could provide substantial economic benefits to farmers by offering them a new industrial oilseed crop. This research could prove invaluable in unlocking the potential of E. lagasce, and in turn, the potential of vernolic acid as a renewable, environmentally friendly source of chemical feedstock.

17.
Heliyon ; 10(7): e27975, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560240

RESUMO

Euphorbia lagascae Spreng is a promising emerging oilseed crop, with its seed oil accounting for approximately 50% of the seed weight. Euphorbia oil contains a significant amount of vernolic acid, comprising two-thirds of its composition, which boasts various industrial applications, including acting as a stabilizer-plasticizer and natural dye. However, this species was known to have a high degree of seed-shattering and a low germination rate, which act as two important barriers to large-scale production and exploitation. Therefore, the objective of this study is to determine the genetic control of seed germination and seed-shattering traits in order to develop a reliable pipeline that would be applicable for industries and breeders to select superior E. lagascae lines and design a robust breeding scheme in a short time at reduced labor costs. For this objective, five different wild-type genotypes of E. lagascae that demonstrated high germination potential were crossed with an ethyl methanesulfonate (EMS) mutant genotype that produces non-shattering capsules. The F2 populations from two successful crosses (A and B) were separated into three different treated groups for seed germination evaluation and to study the segregation of 200 individuals per F2 population. The three treatments were: light, gibberellic acid (GA3), and control treatment. Consequently, plants treated with approximately 250 µmol/m2/s of light showed significant improvement in germination up to 75% in cross A and 82.4 % in cross B compared with the control plants and the group treated with 0.05% GA3. According to the chi-square test results, the inheritance pattern of seed germination in response to light treatment follows a 3:1 segregation ratio between germinated and non-germinated seeds, indicating a dominant gene action in the F2 generation. The same conclusion was followed for the shattering trait in the group treated with light, which was also simply inherited as a 3:1 ratio for shattering vs. non-shattering capsules. Our results emphasize the importance and significance of light treatment in producing uniform populations through acceptable germination and shattering resistance of the mutant genotypes of E. lagascae. This is the first report of light treatment that significantly improved seed germination of E. lagascae, which may enhance efforts in the development of this new industrial crop as a feedstock for vernolic acid production.

18.
Theor Appl Genet ; 126(2): 483-95, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23192670

RESUMO

Soybean seed is a major source of oil for human consumption worldwide and the main renewable feedstock for biodiesel production in North America. Increasing seed oil concentration in soybean [Glycine max (L.) Merrill] with no or minimal impact on protein concentration could be accelerated by exploiting quantitative trait loci (QTL) or gene-specific markers. Oil concentration in soybean is a polygenic trait regulated by many genes with mostly small effects and which is negatively associated with protein concentration. The objectives of this study were to discover and validate oil QTL in two recombinant inbred line (RIL) populations derived from crosses between three moderately high-oil soybean cultivars, OAC Wallace, OAC Glencoe, and RCAT Angora. The RIL populations were grown across several environments over 2 years in Ontario, Canada. In a population of 203 F(3:6) RILs from a cross of OAC Wallace and OAC Glencoe, a total of 11 genomic regions on nine different chromosomes were identified as associated with oil concentration using multiple QTL mapping and single-factor ANOVA. The percentage of the phenotypic variation accounted for by each QTL ranged from 4 to 11 %. Of the five QTL that were tested in a population of 211 F(3:5) RILs from the cross RCAT Angora × OAC Wallace, a "trait-based" bidirectional selective genotyping analysis validated four QTL (80 %). In addition, a total of seven two-way epistatic interactions were identified for oil concentration in this study. The QTL and epistatic interactions identified in this study could be used in marker-assisted introgression aimed at pyramiding high-oil alleles in soybean cultivars to increase oil concentration for biodiesel as well as edible oil applications.


Assuntos
Genes de Plantas/genética , Glycine max/genética , Óleos/metabolismo , Característica Quantitativa Herdável , Sementes/química , Mapeamento Cromossômico , Cromossomos de Plantas , Cruzamentos Genéticos , Marcadores Genéticos , Genótipo , Humanos , Fenótipo , Sementes/genética , Glycine max/crescimento & desenvolvimento
19.
Theor Appl Genet ; 126(7): 1839-50, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23568222

RESUMO

Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database ( http://www.phytozome.net/soybean ). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3' untranslated (3'UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil concentration with no significant impact on seed protein concentration.


Assuntos
Genes de Plantas , Glycine max/genética , Óleos de Plantas/metabolismo , Sementes/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Cruzamentos Genéticos , Marcadores Genéticos , Dados de Sequência Molecular , Ontário , Fenótipo , Locos de Características Quantitativas , Sementes/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Glycine max/metabolismo
20.
Theor Appl Genet ; 126(6): 1677-87, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23536049

RESUMO

Soybean [Glycine max (L.) Merrill] seed oil is the primary global source of edible oil and a major renewable and sustainable feedstock for biodiesel production. Therefore, increasing the relative oil concentration in soybean is desirable; however, that goal is complex due to the quantitative nature of the oil concentration trait and possible effects on major agronomic traits such as seed yield or protein concentration. The objectives of the present study were to study the relationship between seed oil concentration and important agronomic and seed quality traits, including seed yield, 100-seed weight, protein concentration, plant height, and days to maturity, and to identify oil quantitative trait loci (QTL) that are co-localized with the traits evaluated. A population of 203 F4:6 recombinant inbred lines, derived from a cross between moderately high oil soybean genotypes OAC Wallace and OAC Glencoe, was developed and grown across multiple environments in Ontario, Canada, in 2009 and 2010. Among the 11 QTL associated with seed oil concentration in the population, which were detected using either single-factor ANOVA or multiple QTL mapping methods, the number of QTL that were co-localized with other important traits QTL were six for protein concentration, four for seed yield, two for 100-seed weight, one for days to maturity, and one for plant height. The oil-beneficial allele of the QTL tagged by marker Sat_020 was positively associated with seed protein concentration. The oil favorable alleles of markers Satt001 and GmDGAT2B were positively correlated with seed yield. In addition, significant two-way epistatic interactions, where one of the interacting markers was solely associated with seed oil concentration, were identified for the selected traits in this study. The number of significant epistatic interactions was seven for yield, four for days to maturity, two for 100-seed weight, one for protein concentration, and one for plant height. The identified molecular markers associated with oil-related QTL in this study, which also have positive effects on other important traits such as seed yield and protein concentration, could be used in the soybean marker breeding programs aimed at developing either higher seed yield and oil concentration or higher seed protein and oil concentration per hectare. Alternatively, selecting complementary parents with greater breeding values due to positive epistatic interactions could lead to the development of higher oil soybean cultivars.


Assuntos
Cruzamento/métodos , Glycine max/genética , Óleos de Plantas , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Sementes/química , Agricultura/métodos , Análise de Variância , Sementes/crescimento & desenvolvimento , Glycine max/química , Glycine max/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA