Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36479859

RESUMO

Drug seeking is associated with the ventral tegmental area (VTA) dopaminergic (DA) activity. Previously, we have shown that brief optogenetic inhibition of VTA DA neurons with 1 s pulses delivered every 9 s attenuates cocaine seeking under extinction conditions in rats without producing overt signs of dysphoria or locomotor sedation. Whether recruitment of neuronal pathways inhibiting VTA neuronal activity would suppress drug seeking remains unknown. Here, we asked if optogenetic stimulation of the lateral habenula (LHb) efferents in the rostromedial tegmental nucleus (RMTg) as well as RMTg efferents in VTA would reduce drug seeking. To investigate this, we measured how recruitment of elements of this inhibitory pathway affects cocaine seeking in male rats under extinction conditions. The effectiveness of brief optogenetic manipulations was confirmed electrophysiologically at the level of electrical activity of VTA DA neurons. Real-time conditioned place aversion (RT-CPA) and open field tests were performed to control for potential dysphoric/sedating effects of brief optogenetic stimulation of LHb-RMTg-VTA circuitry. Optogenetic stimulation of either RMTg or LHb inhibited VTA DAergic neuron firing, whereas similar stimulation of RMTg efferents in VTA or LHb efferents in RMTg reduced cocaine seeking under extinction conditions. Moreover, stimulation of LHb-RMTg efferents produced an effect that was maintained 24 h later, during cocaine seeking test without stimulation. This effect was specific, as brief optogenetic stimulation did not affect locomotor activity and was not aversive. Our results indicate that defined inhibitory pathways can be recruited to inhibit cocaine seeking, providing potential new targets for non-pharmacological treatment of drug craving.

2.
J Cell Sci ; 133(5)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31964711

RESUMO

Dendritic cell-associated C-type lectin 1 (Dectin-1, also known as CLEC7A) is an innate immune pattern recognition receptor that recognizes ß-glucan on the Candida albicans cell wall. Recognition of ß-glucan by immune cells leads to phagocytosis, oxidative burst, cytokine and chemokine production. We looked for specific mechanisms that coordinate phagocytosis downstream of Dectin-1 leading to actin reorganization and internalization of fungus. We found that stimulation of Dectin-1 by soluble ß-glucan leads to mechanical force generation and areal contraction in Dectin-1-transfected HEK-293 cells and M1 macrophages. With inhibitor studies, we found this force generation is a spleen tyrosine kinase (SYK)-independent, but SRC family kinase (SFK)-dependent process mediated through the RHOA-ROCK-myosin light chain (MLC) pathway. We confirmed activation of RHOA downstream of Dectin-1 using activity assays and stress fiber formation. Through phagocytosis assays, we found direct evidence for the importance of RHOA-ROCK-MLC signaling in the process of phagocytosis of C. albicans.


Assuntos
Lectinas Tipo C , Fagocitose , Candida albicans/metabolismo , Células HEK293 , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Explosão Respiratória , Proteína rhoA de Ligação ao GTP/genética
3.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408885

RESUMO

Even several thousands of DNA lesions are induced in one cell within one day. DNA damage may lead to mutations, formation of chromosomal aberrations, or cellular death. A particularly cytotoxic type of DNA damage is single- and double-strand breaks (SSBs and DSBs, respectively). In this work, we followed DNA conformational transitions induced by the disruption of DNA backbone. Conformational changes of chromatin in living cells were induced by a bleomycin (BLM), an anticancer drug, which generates SSBs and DSBs. Raman micro-spectroscopy enabled to observe chemical changes at the level of single cell and to collect hyperspectral images of molecular structure and composition with sub-micrometer resolution. We applied multivariate data analysis methods to extract key information from registered data, particularly to probe DNA conformational changes. Applied methodology enabled to track conformational transition from B-DNA to A-DNA upon cellular response to BLM treatment. Additionally, increased expression of proteins within the cell nucleus resulting from the activation of repair processes was demonstrated. The ongoing DNA repair process under the BLM action was also confirmed with confocal laser scanning fluorescent microscopy.


Assuntos
Bleomicina , Dano ao DNA , Bleomicina/farmacologia , Aberrações Cromossômicas , DNA , Reparo do DNA , Humanos
4.
Int J Mol Sci ; 23(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36555799

RESUMO

The human body's natural protective barrier, the skin, is exposed daily to minor or major mechanical trauma, which can compromise its integrity. Therefore, the search for new dressing materials that can offer new functionalisation is fully justified. In this work, the development of two new types of dressings based on poly(3-hydroxyoctanoate) (P(3HO)) is presented. One of the groups was supplemented with conjugates of an anti-inflammatory substance (diclofenac) that was covalently linked to oligomers of hydroxycarboxylic acids (Oli-dicP(3HO)). The novel dressings were prepared using the solvent casting/particulate leaching technique. To our knowledge, this is the first paper in which P(3HO)-based dressings were used in mice wound treatment. The results of our research confirm that dressings based on P(3HO) are safe, do not induce an inflammatory response, reduce the expression of pro-inflammatory cytokines, provide adequate wound moisture, support angiogenesis, and, thanks to their hydrophobic characteristics, provide an ideal protective barrier. Newly designed dressings containing Oli-dicP(3HO) can promote tissue regeneration by partially reducing the inflammation at the injury site. To conclude, the presented materials might be potential candidates as excellent dressings for wound treatment.


Assuntos
Implantes Absorvíveis , Cicatrização , Camundongos , Humanos , Animais , Bandagens , Caprilatos
5.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232742

RESUMO

Kidneys play an especial role in copper redistribution in the organism. The epithelial cells of proximal tubules perform the functions of both copper uptake from the primary urine and release to the blood. These cells are equipped on their apical and basal membrane with copper transporters CTR1 and ATP7A. Mosaic mutant mice displaying a functional dysfunction of ATP7A are an established model of Menkes disease. These mice exhibit systemic copper deficiency despite renal copper overload, enhanced by copper therapy, which is indispensable for their life span extension. The aim of this study was to analyze the expression of Slc31a1 and Slc31a2 genes (encoding CTR1/CTR2 proteins) and the cellular localization of the CTR1 protein in suckling, young and adult mosaic mutants. Our results indicate that in the kidney of both intact and copper-injected 14-day-old mutants showing high renal copper content, CTR1 mRNA level is not up-regulated compared to wild-type mice given a copper injection. The expression of the Slc31a1 gene in 45-day-old mice is even reduced compared with intact wild-type animals. In suckling and young copper-injected mutants, the CTR1 protein is relocalized from the apical membrane to the cytoplasm of epithelial cells of proximal tubules, the process which prevents copper transport from the primary urine and, thus, protects cells against copper toxicity.


Assuntos
Transportador de Cobre 1 , Cobre , Células Epiteliais , Túbulos Renais Proximais , Síndrome dos Cabelos Torcidos , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Cobre/metabolismo , Cobre/toxicidade , Transportador de Cobre 1/genética , Transportador de Cobre 1/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Expressão Gênica , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Síndrome dos Cabelos Torcidos/etiologia , Síndrome dos Cabelos Torcidos/genética , Síndrome dos Cabelos Torcidos/metabolismo , Camundongos , Transporte Proteico/genética , Transporte Proteico/fisiologia , RNA Mensageiro/metabolismo , Proteínas SLC31/genética , Proteínas SLC31/metabolismo
6.
J Virol ; 94(15)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32434888

RESUMO

Currently, there are four seasonal coronaviruses associated with relatively mild respiratory tract disease in humans. However, there is also a plethora of animal coronaviruses which have the potential to cross the species border. This regularly results in the emergence of new viruses in humans. In 2002, severe acute respiratory syndrome coronavirus (SARS-CoV) emerged and rapidly disappeared in May 2003. In 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) was identified as a possible threat to humans, but its pandemic potential so far is minimal, as human-to-human transmission is ineffective. The end of 2019 brought us information about severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emergence, and the virus rapidly spread in 2020, causing an unprecedented pandemic. At present, studies on the virus are carried out using a surrogate system based on the immortalized simian Vero E6 cell line. This model is convenient for diagnostics, but it has serious limitations and does not allow for understanding of the biology and evolution of the virus. Here, we show that fully differentiated human airway epithelium cultures constitute an excellent model to study infection with the novel human coronavirus SARS-CoV-2. We observed efficient replication of the virus in the tissue, with maximal replication at 2 days postinfection. The virus replicated in ciliated cells and was released apically.IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged by the end of 2019 and rapidly spread in 2020. At present, it is of utmost importance to understand the biology of the virus, rapidly assess the treatment potential of existing drugs, and develop new active compounds. While some animal models for such studies are under development, most of the research is carried out in Vero E6 cells. Here, we propose fully differentiated human airway epithelium cultures as a model for studies on SARS-CoV-2.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Mucosa Respiratória/virologia , Síndrome Respiratória Aguda Grave/virologia , Replicação Viral , Animais , COVID-19 , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Humanos , Pandemias , SARS-CoV-2 , Células Vero
7.
FASEB J ; 34(2): 2227-2237, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31916632

RESUMO

Cyanidin-3-glucoside (C3G) is a natural pigment, found in many colorful fruits and vegetables. It has many health benefits, including anti-inflammation, cancer prevention, and anti-diabetes. Although C3G is assumed to be an antioxidant, it has been reported to affect cell-matrix adhesions. However, the underlying molecular mechanism is unknown. Here, we show that the expression of talin1, a key regulator of integrins and cell adhesions, negatively correlated with the survival rate of colon cancer patients and that depletion of talin1 inhibited 3D spheroid growth in colon cancer cells. Interestingly, C3G bound to talin and promoted the interaction of talin with ß1A-integrin. Molecular docking analysis shows that C3G binds to the interface of the talin-ß-integrin complex, acting as an allosteric regulator and altering the interaction between talin and integrin. Moreover, C3G promoted colon cancer cell attachment to fibronectin. While C3G had no significant effect on colon cancer cell proliferation, it significantly inhibited 3D spheroid growth in fibrin gel assays. Since C3G has no or very low toxicity, it could be potentially used for colon cancer prevention or therapy.


Assuntos
Antocianinas/farmacocinética , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo , Glucosídeos/farmacocinética , Proteínas de Neoplasias , Talina , Animais , Células CHO , Técnicas de Cultura de Células , Neoplasias do Colo/química , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Cricetinae , Cricetulus , Células HCT116 , Humanos , Simulação de Dinâmica Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Talina/química , Talina/metabolismo
8.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478069

RESUMO

It is well known that living cells interact mechanically with their microenvironment. Many basic cell functions, like migration, proliferation, gene expression, and differentiation, are influenced by external forces exerted on the cell. That is why it is extremely important to study how mechanical properties of the culture substrate influence the cellular molecular regulatory pathways. Optical microscopy is one of the most common experimental method used to visualize and study cellular processes. Confocal microscopy allows to observe changes in the 3D organization of the cytoskeleton in response to a precise mechanical stimulus applied with, for example, a bead trapped with optical tweezers. Optical tweezers-based method (OT) is a microrheological technique which employs a focused laser beam and polystyrene or latex beads to study mechanical properties of biological systems. Latex beads, functionalized with a specific protein, can interact with proteins located on the surface of the cellular membrane. Such interaction can significantly affect the cell's behavior. In this work, we demonstrate that beads alone, placed on the cell surface, significantly change the architecture of actin, microtubule, and intermediate filaments. We also show that the observed molecular response to such stimulus depends on the duration of the cell-bead interaction. Application of cytoskeletal drugs: cytochalasin D, jasplakinolide, and docetaxel, abrogates remodeling effects of the cytoskeleton. More important, when cells are plated on elastic substrates, which mimic the mechanical properties of physiological cellular environment, we observe formation of novel, "cup-like" structures formed by the microtubule cytoskeleton upon interaction with latex beads. These results provide new insights into the function of the microtubule cytoskeleton. Based on these results, we conclude that rigidity of the substrate significantly affects the cellular processes related to every component of the cytoskeleton, especially their architecture.


Assuntos
Adesão Celular/fisiologia , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Estresse Mecânico , Actinas/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/fisiologia , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/ultraestrutura , Elasticidade/fisiologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Fibroblastos/ultraestrutura , Dureza/fisiologia , Camundongos , Microscopia Confocal , Microesferas , Microtúbulos/metabolismo , Células Swiss 3T3 , Alicerces Teciduais/efeitos adversos , Alicerces Teciduais/química
9.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34201927

RESUMO

Polylactide (PLA), widely used in bioengineering and medicine, gained popularity due to its biocompatibility and biodegradability. Natural origin and eco-friendly background encourage the search of novel materials with such features, such as polyhydroxyoctanoate (P(3HO)), a polyester of bacterial origin. Physicochemical features of both P(3HO) and PLA have an impact on cellular response 32, i.e., adhesion, migration, and cell morphology, based on the signaling and changes in the architecture of the three cytoskeletal networks: microfilaments (F-actin), microtubules, and intermediate filaments (IF). To investigate the role of IF in the cellular response to the substrate, we focused on vimentin intermediate filaments (VIFs), present in mouse embryonic fibroblast cells (MEF). VIFs maintain cell integrity and protect it from external mechanical stress, and also take part in the transmission of signals from the exterior of the cell to its inner organelles, which is under constant investigation. Physiochemical properties of a substrate have an impact on cells' morphology, and thus on cytoskeleton network signaling and assembly. In this work, we show how PLA and P(3HO) crystallinity and hydrophilicity influence VIFs, and we identify that two different types of vimentin cytoskeleton architecture: network "classic" and "nutshell-like" are expressed by MEFs in different numbers of cells depending on substrate features.


Assuntos
Materiais Biocompatíveis , Citoesqueleto/metabolismo , Poliésteres , Vimentina/metabolismo , Animais , Materiais Biocompatíveis/química , Linhagem Celular , Células Cultivadas , Citoesqueleto/química , Fibroblastos/metabolismo , Imunofluorescência , Expressão Gênica , Camundongos , Vimentina/genética
10.
FASEB J ; 33(1): 631-642, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30040488

RESUMO

Phosphatidylinositol 4-phosphate 5-kinase type I γ (PIPKIγ90) regulates cell migration, invasion, and metastasis. However, it is unknown how cellular signals regulate those processes. Here, we show that cyclin-dependent kinase 5 (Cdk5), a protein kinase that regulates cell migration and invasion, phosphorylates PIPKIγ90 at S453, and that Cdk5-mediated PIPKIγ90 phosphorylation is essential for cell invasion. Moreover, Cdk5-mediated phosphorylation down-regulates the activity of PIPKIγ90 and the secretion of fibronectin, an extracellular matrix protein that regulates cell migration and invasion. Furthermore, inhibition of PIPKIγ activity with the chemical inhibitor UNC3230 suppresses fibronectin secretion in a dose-dependent manner, whereas depletion of Cdk5 enhances fibronectin secretion. With total internal reflection fluorescence microscopy, we found that secreted fibronectin appears as round dots, which colocalize with Tks5 and CD9 but not with Zyxin. These data suggest that Cdk5-mediated PIPKIγ90 phosphorylation regulates cell invasion by controlling PIPKIγ90 activity and fibronectin secretion.-Li, L., Kolodziej, T., Jafari, N., Chen, J., Zhu, H., Rajfur, Z., Huang, C. Cdk5-mediated phosphorylation regulates phosphatidylinositol 4-phosphate 5-kinase type I γ 90 activity and cell invasion.


Assuntos
Neoplasias da Mama/patologia , Quinase 5 Dependente de Ciclina/metabolismo , Fibronectinas/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Quinase 5 Dependente de Ciclina/genética , Feminino , Fibronectinas/genética , Humanos , Invasividade Neoplásica , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Transdução de Sinais , Células Tumorais Cultivadas
11.
J Immunol ; 201(2): 371-382, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29866702

RESUMO

Lysosomes maintain immune homeostasis through the degradation of phagocytosed apoptotic debris; however, the signaling events regulating lysosomal maturation remain undefined. In this study, we show that lysosome acidification, key to the maturation process, relies on mTOR complex 2 (mTORC2), activation of caspase-1, and cleavage of Rab39a. Mechanistically, the localization of cofilin to the phagosome recruits caspase-11, which results in the localized activation of caspase-1. Caspase-1 subsequently cleaves Rab39a on the phagosomal membrane, promoting lysosome acidification. Although caspase-1 is critical for lysosome acidification, its activation is independent of inflammasomes and cell death mediated by apoptosis-associated speck-like protein containing a caspase recruitment domain, revealing a role beyond pyroptosis. In lupus-prone murine macrophages, chronic mTORC2 activity decouples the signaling pathway, leaving Rab39a intact. As a result, the lysosome does not acidify, and degradation is impaired, thereby heightening the burden of immune complexes that activate FcγRI and sustain mTORC2 activity. This feedforward loop promotes chronic immune activation, leading to multiple lupus-associated pathologies. In summary, these findings identify the key molecules in a previously unappreciated signaling pathway that promote lysosome acidification. It also shows that this pathway is disrupted in systemic lupus erythematosus.


Assuntos
Caspase 1/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Complexo Antígeno-Anticorpo/metabolismo , Apoptose/fisiologia , Homeostase/fisiologia , Inflamassomos/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/fisiologia , Fagossomos/metabolismo , Piroptose/fisiologia , Transdução de Sinais/fisiologia
12.
Addict Biol ; 25(6): e12826, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31478293

RESUMO

Preclinical studies strongly suggest that cocaine seeking depends on the neuronal activity of the ventral tegmental area (VTA) and phasic dopaminergic (DA) signaling. Notably, VTA pharmacological inactivation or dopamine receptor blockade in the forebrain may induce behavioral inhibition in general and acute aversive states in particular, thus reducing cocaine seeking indirectly. Such artifacts hinder successful translation of these findings in clinical studies and practice. Here, we aimed to evaluate if dynamic VTA manipulations effectively reduce cocaine seeking. We used male tyrosine hydroxylase (TH) IRES-Cre+ rats along with optogenetic tools to inhibit directly and briefly VTA DA neurons during conditioned stimulus (CS)-induced cocaine seeking under extinction conditions. The behavioral effects of optogenetic inhibition were also assessed in the real-time dynamic place aversion, conditioned place aversion, and CS-induced food-seeking tests. We found that brief and nondysphoric/nonsedative pulses of VTA photo-inhibition (1 s every 9 s, ie, for 10% of time) attenuated CS-induced cocaine seeking under extinction conditions in rats expressing archaerhodopsin selectively on the TH+ neurons. Furthermore, direct inhibition of the VTA DA activity reduced CS-induced cocaine seeking 24 hours after photo-modulation. Importantly, such effect appears to be selective for cocaine seeking as similar inhibition of the VTA DA activity had no effect on CS-induced food seeking. Thus, briefly inhibiting VTA DA activity during CS-induced cocaine seeking drastically and selectively reduces seeking without behavioral artifacts such as sedation or dysphoria. Our results point to the therapeutic possibilities of coupling nonpharmacologic treatments with extinction training in reducing cocaine addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Transtornos Relacionados ao Uso de Cocaína/psicologia , Neurônios Dopaminérgicos/fisiologia , Comportamento de Procura de Droga/fisiologia , Área Tegmentar Ventral/fisiopatologia , Animais , Cocaína/toxicidade , Condicionamento Operante , Extinção Psicológica , Masculino , Inibição Neural , Optogenética , Ratos , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/genética
13.
Int J Mol Sci ; 21(20)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050497

RESUMO

Vimentin, an intermediate filament protein present in leukocytes, blood vessel endothelial cells, and multiple mesenchymal cells, such as mouse embryonic fibroblasts (MEF 3T3), is crucial for various cellular processes, as well as for maintaining the integrity and durability (stability) of the cell cytoskeleton. Vimentin intermediate filaments (VIFs) adhere tightly to the nucleus and spread to the lamellipodium and tail of the cell, serving as a connector between the nucleus, and the cell's edges, especially in terms of transferring mechanical signals throughout the cell. How these signals are transmitted exactly remains under investigation. In the presented work, we propose that vimentin is involved in that transition by influencing the shape of the nucleus through the formation of nuclear blebs and grooves, as demonstrated by microscopic observations of healthy MEF (3T3) cells. Grooved, or "coffee beans" nuclei, have, to date, been noticed in several healthy cells; however, these structures are especially frequent in cancer cells-they serve as a significant marker for recognition of multiple cancers. We observed 288 MEF3T3 cells cultured on polyhydroxyoctanoate (PHO), polylactide (PLA), and glass, and we identified grooves, coaligned with vimentin fibers in the nuclei of 47% of cells cultured on PHO, 50% of cells on glass, and 59% of cells growing on PLA. We also observed nuclear blebs and associated their occurrence with the type of substrate used for cell culture. We propose that the higher rate of blebs in the nuclei of cells, cultured on PLA, is related to the microenvironmental features of the substrate, pH in particular.


Assuntos
Núcleo Celular/metabolismo , Fibroblastos/metabolismo , Vimentina/metabolismo , Células 3T3 , Citoesqueleto de Actina/metabolismo , Animais , Células Cultivadas , Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Microtúbulos/metabolismo , Ligação Proteica , Transporte Proteico , Vimentina/genética
14.
Int J Mol Sci ; 21(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092142

RESUMO

In most mammals, neonatal intravascular hemolysis is a benign and moderate disorder that usually does not lead to anemia. During the neonatal period, kidneys play a key role in detoxification and recirculation of iron species released from red blood cells (RBC) and filtered out by glomeruli to the primary urine. Activity of heme oxygenase 1 (HO1), a heme-degrading enzyme localized in epithelial cells of proximal tubules, seems to be of critical importance for both processes. We show that, in HO1 knockout mouse newborns, hemolysis was prolonged despite a transient state and exacerbated, which led to temporal deterioration of RBC status. In neonates lacking HO1, functioning of renal molecular machinery responsible for iron reabsorption from the primary urine (megalin/cubilin complex) and its transfer to the blood (ferroportin) was either shifted in time or impaired, respectively. Those abnormalities resulted in iron loss from the body (excreted in urine) and in iron retention in the renal epithelium. We postulate that, as a consequence of these abnormalities, a tight systemic iron balance of HO1 knockout neonates may be temporarily affected.


Assuntos
Heme Oxigenase-1/deficiência , Hemólise , Ferro/metabolismo , Rim/metabolismo , Insuficiência Renal/metabolismo , Anemia/sangue , Anemia/terapia , Animais , Animais Recém-Nascidos , Contagem de Eritrócitos , Feminino , Heme/metabolismo , Heme Oxigenase-1/genética , Ferro/urina , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Insuficiência Renal/genética , Insuficiência Renal/terapia
15.
J Virol ; 92(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142129

RESUMO

The first steps of human coronavirus NL63 (HCoV-NL63) infection were previously described. The virus binds to target cells by use of heparan sulfate proteoglycans and interacts with the ACE2 protein. Subsequent events, including virus internalization and trafficking, remain to be elucidated. In this study, we mapped the process of HCoV-NL63 entry into the LLC-Mk2 cell line and ex vivo three-dimensional (3D) tracheobronchial tissue. Using a variety of techniques, we have shown that HCoV-NL63 virions require endocytosis for successful entry into the LLC-MK2 cells, and interaction between the virus and the ACE2 molecule triggers recruitment of clathrin. Subsequent vesicle scission by dynamin results in virus internalization, and the newly formed vesicle passes the actin cortex, which requires active cytoskeleton rearrangement. Finally, acidification of the endosomal microenvironment is required for successful fusion and release of the viral genome into the cytoplasm. For 3D tracheobronchial tissue cultures, we also observed that the virus enters the cell by clathrin-mediated endocytosis, but we obtained results suggesting that this pathway may be bypassed.IMPORTANCE Available data on coronavirus entry frequently originate from studies employing immortalized cell lines or undifferentiated cells. Here, using the most advanced 3D tissue culture system mimicking the epithelium of conductive airways, we systematically mapped HCoV-NL63 entry into susceptible cells. The data obtained allow for a better understanding of the infection process and may support development of novel treatment strategies.


Assuntos
Infecções por Coronavirus/metabolismo , Coronavirus Humano NL63/fisiologia , Endocitose , Internalização do Vírus , Linhagem Celular , Clatrina/metabolismo , Endossomos/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas do Envelope Viral/metabolismo
16.
Biopolymers ; 110(11): e23324, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31348536

RESUMO

Biodegradable and biocompatible novel materials of natural origin are gaining more and more attention in recent years. These so called biopolymers, characterized by their biointegrity and biocompatibility, find completely new and promising applications in biomedical sciences. The presented work focuses on the medium chain length elastomeric polyhydroxyalkanoate biopolymer-polyhydroxyoctanoate (PHO). This biopolymer is fully biodegradable without formation of harmful byproducts.We investigated PHO's physical properties with nanoindentation technique and scratch testing to determine Young's modulus and friction coefficient. Further, the work focused on the impact of PHO, used as growth substrate, on the physiology and morphology of mouse embryonic fibroblast cells (MEF 3T3). Application of fluorescent staining protocols and advanced microscopic techniques allowed to study the morphological changes in the cytoskeletons of cells grown on PHO and also gave an insight into their migration strategies on the polymer surface. We found that PHO exhibits no cellular cytotoxicity, similarly to a glass substrate. MEF cells spread better on glass surface than on each tested PHO substrate though there was almost no difference between PHO substrates cast from different solvents. However, a detailed analysis of actin and microtubule cytoskeletal architecture reveals changes in the density of actin and microtubular networks. Migration of MEF cells on PHO substrates was slower than on the glass substrate. To elucidate the molecular mechanisms of observed changes in cytoskeletal architecture and migration parameters can be of special interest for future medical application of PHO polymer.


Assuntos
Fibroblastos/citologia , Polímeros/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Movimento Celular/fisiologia , Fibroblastos/efeitos dos fármacos , Camundongos , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/farmacologia
17.
Cell Commun Signal ; 17(1): 41, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053158

RESUMO

BACKGROUND: The flaviviridae family comprises single-stranded RNA viruses that enter cells via clathrin-mediated pH-dependent endocytosis. Although the initial events of the virus entry have been already identified, data regarding intracellular virus trafficking and delivery to the replication site are limited. The purpose of this study was to map the transport route of Zika virus and to identify the fusion site within the endosomal compartment. METHODS: Tracking of viral particles in the cell was carried out with confocal microscopy. Immunostaining of two structural proteins of Zika virus enabled precise mapping of the route of the ribonucleocapsid and the envelope and, consequently, mapping the fusion site in the endosomal compartment. The results were verified using RNAi silencing and chemical inhibitors. RESULTS: After endocytic internalization, Zika virus is trafficked through the endosomal compartment to fuse in late endosomes. Inhibition of endosome acidification using bafilomycin A1 hampers the infection, as the fusion is inhibited; instead, the virus is transported to late compartments where it undergoes proteolytic degradation. The degradation products are ejected from the cell via slow recycling vesicles. Surprisingly, NH4Cl, which is also believed to block endosome acidification, shows a very different mode of action. In the presence of this basic compound, the endocytic hub is reprogrammed. Zika virus-containing vesicles never reach the late stage, but are rapidly trafficked to the plasma membrane via a fast recycling pathway after the clathrin-mediated endocytosis. Further, we also noted that, similarly as other members of the flaviviridae family, Zika virus undergoes furin- or furin-like-dependent activation during late steps of infection, while serine or cysteine proteases are not required for Zika virus maturation or entry. CONCLUSIONS: Zika virus fusion occurs in late endosomes and is pH-dependent. These results broaden our understanding of Zika virus intracellular trafficking and may in future allow for development of novel treatment strategies. Further, we identified a novel mode of action for agents commonly used in studies of virus entry. Schematic representation of differences in ZIKV trafficking in the presence of Baf A1 and NH4Cl.


Assuntos
Internalização do Vírus , Zika virus/fisiologia , Animais , Chlorocebus aethiops , Endossomos/virologia , Inibidores Enzimáticos/farmacologia , Macrolídeos/farmacologia , Células Vero , Zika virus/efeitos dos fármacos , Zika virus/patogenicidade
18.
Proc Natl Acad Sci U S A ; 113(15): E2142-51, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035940

RESUMO

Defects in clearing apoptotic debris disrupt tissue and immunological homeostasis, leading to autoimmune and inflammatory diseases. Herein, we report that macrophages from lupus-prone MRL/lpr mice have impaired lysosomal maturation, resulting in heightened ROS production and attenuated lysosomal acidification. Impaired lysosomal maturation diminishes the ability of lysosomes to degrade apoptotic debris contained within IgG-immune complexes (IgG-ICs) and promotes recycling and the accumulation of nuclear self-antigens at the membrane 72 h after internalization. Diminished degradation of IgG-ICs prolongs the intracellular residency of nucleic acids, leading to the activation of Toll-like receptors. It also promotes phagosomal membrane permeabilization, allowing dsDNA and IgG to leak into the cytosol and activate AIM2 and TRIM21. Collectively, these events promote the accumulation of nuclear antigens and activate innate sensors that drive IFNα production and heightened cell death. These data identify a previously unidentified defect in lysosomal maturation that provides a mechanism for the chronic activation of intracellular innate sensors in systemic lupus erythematosus.


Assuntos
Lúpus Eritematoso Sistêmico/imunologia , Lisossomos/imunologia , Macrófagos/imunologia , Animais , Complexo Antígeno-Anticorpo/imunologia , Permeabilidade da Membrana Celular , DNA/metabolismo , Proteínas de Ligação a DNA/imunologia , Escherichia coli/imunologia , Haptenos , Hemocianinas/imunologia , Imunidade Inata , Imunoglobulina G/imunologia , Interferon-alfa/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Camundongos Transgênicos , Espécies Reativas de Oxigênio/metabolismo , Ribonucleoproteínas/imunologia , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia
19.
Vet Res ; 49(1): 55, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970183

RESUMO

Canine respiratory coronavirus (CRCoV), identified in 2003, is a member of the Coronaviridae family. The virus is a betacoronavirus and a close relative of human coronavirus OC43 and bovine coronavirus. Here, we examined entry of CRCoV into human rectal tumor cells (HRT-18G cell line) by analyzing co-localization of single virus particles with cellular markers in the presence or absence of chemical inhibitors of pathways potentially involved in virus entry. We also targeted these pathways using siRNA. The results show that the virus hijacks caveolin-dependent endocytosis to enter cells via endocytic internalization.


Assuntos
Caveolina 1/metabolismo , Infecções por Coronavirus/virologia , Coronavirus Canino/fisiologia , Internalização do Vírus , Linhagem Celular Tumoral , Endocitose , Humanos
20.
J Physiol ; 595(11): 3425-3447, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28098344

RESUMO

KEY POINTS: Relaxin-3 is a stress-responsive neuropeptide that acts at its cognate receptor, RXFP3, to alter behaviours including feeding. In this study, we have demonstrated a direct, RXFP3-dependent, inhibitory action of relaxin-3 on oxytocin and vasopressin paraventricular nucleus (PVN) neuron electrical activity, a putative cellular mechanism of orexigenic actions of relaxin-3. We observed a Gαi/o -protein-dependent inhibitory influence of selective RXFP3 activation on PVN neuronal activity in vitro and demonstrated a direct action of RXFP3 activation on oxytocin and vasopressin PVN neurons, confirmed by their abundant expression of RXFP3 mRNA. Moreover, we demonstrated that RXFP3 activation induces a cadmium-sensitive outward current, which indicates the involvement of a characteristic magnocellular neuron outward potassium current. Furthermore, we identified an abundance of relaxin-3-immunoreactive axons/fibres originating from the nucleus incertus in close proximity to the PVN, but associated with sparse relaxin-3-containing fibres/terminals within the PVN. ABSTRACT: The paraventricular nucleus of the hypothalamus (PVN) plays an essential role in the control of food intake and energy expenditure by integrating multiple neural and humoral inputs. Recent studies have demonstrated that intracerebroventricular and intra-PVN injections of the neuropeptide relaxin-3 or selective relaxin-3 receptor (RXFP3) agonists produce robust feeding in satiated rats, but the cellular and molecular mechanisms of action associated with these orexigenic effects have not been identified. In the present studies, using rat brain slices, we demonstrated that relaxin-3, acting through its cognate G-protein-coupled receptor, RXFP3, hyperpolarized a majority of putative magnocellular PVN neurons (88%, 22/25), including cells producing the anorexigenic neuropeptides, oxytocin and vasopressin. Importantly, the action of relaxin-3 persisted in the presence of tetrodotoxin and glutamate/GABA receptor antagonists, indicating its direct action on PVN neurons. Similar inhibitory effects on PVN oxytocin and vasopressin neurons were produced by the RXFP3 agonist, RXFP3-A2 (82%, 80/98 cells). In situ hybridization histochemistry revealed a strong colocalization of RXFP3 mRNA with oxytocin and vasopressin immunoreactivity in rat PVN neurons. A smaller percentage of putative parvocellular PVN neurons was sensitive to RXFP3-A2 (40%, 16/40 cells). These data, along with a demonstration of abundant peri-PVN and sparse intra-PVN relaxin-3-immunoreactive nerve fibres, originating from the nucleus incertus, the major source of relaxin-3 neurons, identify a strong inhibitory influence of relaxin-3-RXFP3 signalling on the electrical activity of PVN oxytocin and vasopressin neurons, consistent with the orexigenic effect of RXFP3 activation observed in vivo.


Assuntos
Neurônios/metabolismo , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Transdução de Sinais , Vasopressinas/metabolismo , Potenciais de Ação , Animais , Antagonistas GABAérgicos/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/fisiologia , Potássio/metabolismo , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Relaxina/farmacologia , Tetrodotoxina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA