Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1276950, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179057

RESUMO

Introduction: This study evaluated the immune response to a multiepitope recombinant chimeric protein (CHIVAX) containing B- and T-cell epitopes of the SARS-CoV-2 spike's receptor binding domain (RBD) in a translational porcine model for pre-clinical studies. Methods: We generated a multiepitope recombinant protein engineered to include six coding conserved epitopes from the RBD domain of the SARS-CoV-2 S protein. Pigs were divided into groups and immunized with different doses of the protein, with serum samples collected over time to determine antibody responses by indirect ELISA and antibody titration. Peptide recognition was also analyzed by Western blotting. A surrogate neutralization assay with recombinant ACE2 and RBDs was performed. Intranasal doses of the immunogen were also prepared and tested on Vietnamese minipigs. Results: When the immunogen was administered subcutaneously, it induced specific IgG antibodies in pigs, and higher doses correlated with higher antibody levels. Antibodies from immunized pigs recognized individual peptides in the multiepitope vaccine and inhibited RBD-ACE2 binding for five variants of concern (VOC). Comparative antigen delivery methods showed that both, subcutaneous and combined subcutaneous/intranasal approaches, induced specific IgG and IgA antibodies, with the subcutaneous approach having superior neutralizing activity. CHIVAX elicited systemic immunity, evidenced by specific IgG antibodies in the serum, and local mucosal immunity, indicated by IgA antibodies in saliva, nasal, and bronchoalveolar lavage secretions. Importantly, these antibodies demonstrated neutralizing activity against SARS-CoV-2 in vitro. Discussion: The elicited antibodies recognized individual epitopes on the chimeric protein and demonstrated the capacity to block RBD-ACE2 binding of the ancestral SARS-CoV-2 strain and four VOCs. The findings provide proof of concept for using multiepitope recombinant antigens and a combined immunization protocol to induce a neutralizing immune response against SARS-CoV-2 in the pig translational model for preclinical studies.


Assuntos
COVID-19 , Vacinas , Suínos , Animais , Humanos , Imunidade nas Mucosas , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Porco Miniatura , Epitopos de Linfócito T , Imunoglobulina A , Imunoglobulina G
2.
Comp Immunol Microbiol Infect Dis ; 68: 101400, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31794953

RESUMO

Newborn humans and animals are highly susceptible to viral infections. The Aujeszky´s disease virus (ADV) is a porcine herpes virus 1 which infects the respiratory tract and is lethal during the first weeks of life. Current intramuscular vaccines, applied at weaning, induce poor mucosal immunity and frequently fail to prevent and control the disease. Additionally, early vaccination has not been studied thoroughly. Therefore, we studied a systemic/mucosal route of immunization using an inactivated ADV vaccine in two-and fourteen-day-old groups of unweaned SPF miniature Vietnamese pigs, measuring the anti ADV antibody (ELISA) and cytokine (qPCR) responses in systemic and mucosal samples. The results showed that the serum ADV-specific IgG response was higher in the 14-day groups. However, the nasal IgA responses were similar in immunized groups, although the response in saliva was higher in the 2-day old group. Moreover, in vitro ADV stimulated peripheral blood mononuclear cells and lung cells from immunized pigs showed higher IFN-γ mRNA production in the 14-day old group than in younger animals and similar levels of IL-4 and IL-10 transcripts. Our data suggest that early mucosal immunization induce humoral and cellular systemic and mucosal immune responses against ADV in young pigs and younger animals may have compensatory mechanisms to overcome early immaturity and maternal-driven immune interference. Therefore, early protection in susceptible animals could be induced using this immunization protocol, opening the possibility for its application against other viral pathogens of pigs and for traslational studies in humans.


Assuntos
Anticorpos Antivirais/sangue , Imunidade nas Mucosas , Pseudorraiva/prevenção & controle , Doenças dos Suínos/prevenção & controle , Vacinas Virais/imunologia , Animais , Animais Recém-Nascidos , Citocinas/imunologia , Herpesvirus Suídeo 1 , Imunidade Celular , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Interferon gama/imunologia , Pseudorraiva/imunologia , Organismos Livres de Patógenos Específicos , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas Virais/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA