Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885696

RESUMO

Harnessing genetic diversity in major staple crops through the development of new breeding capabilities is essential to ensure food security1. Here we examined the genetic and phenotypic diversity of the A.E. Watkins landrace collection2 of bread wheat (Triticum aestivum), a major global cereal, through whole-genome re-sequencing (827 Watkins landraces and 208 modern cultivars) and in-depth field evaluation spanning a decade. We discovered that modern cultivars are derived from just two of the seven ancestral groups of wheat and maintain very long-range haplotype integrity. The remaining five groups represent untapped genetic sources, providing access to landrace-specific alleles and haplotypes for breeding. Linkage disequilibrium (LD) based haplotypes and association genetics analyses link Watkins genomes to the thousands of high-resolution quantitative trait loci (QTL), and significant marker-trait associations identified. Using these structured germplasm, genotyping and informatics resources, we revealed many Watkins-unique beneficial haplotypes that can confer superior traits in modern wheat. Furthermore, we assessed the phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 prioritised QTL in the context of modern cultivars, bridging the gap between landrace diversity and current breeding. This study establishes a framework for systematically utilising genetic diversity in crop improvement to achieve sustainable food security.

2.
Nature ; 620(7975): 830-838, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532937

RESUMO

Einkorn (Triticum monococcum) was the first domesticated wheat species, and was central to the birth of agriculture and the Neolithic Revolution in the Fertile Crescent around 10,000 years ago1,2. Here we generate and analyse 5.2-Gb genome assemblies for wild and domesticated einkorn, including completely assembled centromeres. Einkorn centromeres are highly dynamic, showing evidence of ancient and recent centromere shifts caused by structural rearrangements. Whole-genome sequencing analysis of a diversity panel uncovered the population structure and evolutionary history of einkorn, revealing complex patterns of hybridizations and introgressions after the dispersal of domesticated einkorn from the Fertile Crescent. We also show that around 1% of the modern bread wheat (Triticum aestivum) A subgenome originates from einkorn. These resources and findings highlight the history of einkorn evolution and provide a basis to accelerate the genomics-assisted improvement of einkorn and bread wheat.


Assuntos
Produção Agrícola , Genoma de Planta , Genômica , Triticum , Triticum/classificação , Triticum/genética , Produção Agrícola/história , História Antiga , Sequenciamento Completo do Genoma , Introgressão Genética , Hibridização Genética , Pão/história , Genoma de Planta/genética , Centrômero/genética
3.
Nature ; 588(7837): 277-283, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33239791

RESUMO

Advances in genomics have expedited the improvement of several agriculturally important crops but similar efforts in wheat (Triticum spp.) have been more challenging. This is largely owing to the size and complexity of the wheat genome1, and the lack of genome-assembly data for multiple wheat lines2,3. Here we generated ten chromosome pseudomolecule and five scaffold assemblies of hexaploid wheat to explore the genomic diversity among wheat lines from global breeding programs. Comparative analysis revealed extensive structural rearrangements, introgressions from wild relatives and differences in gene content resulting from complex breeding histories aimed at improving adaptation to diverse environments, grain yield and quality, and resistance to stresses4,5. We provide examples outlining the utility of these genomes, including a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire involved in disease resistance and the characterization of Sm16, a gene associated with insect resistance. These genome assemblies will provide a basis for functional gene discovery and breeding to deliver the next generation of modern wheat cultivars.


Assuntos
Variação Genética , Genoma de Planta/genética , Genômica , Internacionalidade , Melhoramento Vegetal/métodos , Triticum/genética , Aclimatação/genética , Animais , Centrômero/genética , Centrômero/metabolismo , Mapeamento Cromossômico , Clonagem Molecular , Variações do Número de Cópias de DNA/genética , Elementos de DNA Transponíveis/genética , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Genes de Plantas/genética , Introgressão Genética , Haplótipos , Insetos/patogenicidade , Proteínas NLR/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Poliploidia , Triticum/classificação , Triticum/crescimento & desenvolvimento
4.
Proc Natl Acad Sci U S A ; 119(16): e2123299119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412884

RESUMO

Wheat is a widely grown food crop that suffers major yield losses due to attack by pests and pathogens. A better understanding of biotic stress responses in wheat is thus of major importance. The recently assembled bread wheat genome coupled with extensive transcriptomic resources provides unprecedented new opportunities to investigate responses to pathogen challenge. Here, we analyze gene coexpression networks to identify modules showing consistent induction in response to pathogen exposure. Within the top pathogen-induced modules, we identify multiple clusters of physically adjacent genes that correspond to six pathogen-induced biosynthetic pathways that share a common regulatory network. Functional analysis reveals that these pathways, all of which are encoded by biosynthetic gene clusters, produce various different classes of compounds­namely, flavonoids, diterpenes, and triterpenes, including the defense-related compound ellarinacin. Through comparative genomics, we also identify associations with the known rice phytoalexins momilactones, as well as with a defense-related gene cluster in the grass model plant Brachypodium distachyon. Our results significantly advance the understanding of chemical defenses in wheat and open up avenues for enhancing disease resistance in this agriculturally important crop. They also exemplify the power of transcriptional networks to discover the biosynthesis of chemical defenses in plants with large, complex genomes.


Assuntos
Vias Biossintéticas , Interações Hospedeiro-Patógeno , Doenças das Plantas , Triticum , Vias Biossintéticas/genética , Pão , Resistência à Doença/genética , Família Multigênica/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/metabolismo , Triticum/microbiologia
5.
Nature ; 541(7636): 212-216, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28024298

RESUMO

Ash trees (genus Fraxinus, family Oleaceae) are widespread throughout the Northern Hemisphere, but are being devastated in Europe by the fungus Hymenoscyphus fraxineus, causing ash dieback, and in North America by the herbivorous beetle Agrilus planipennis. Here we sequence the genome of a low-heterozygosity Fraxinus excelsior tree from Gloucestershire, UK, annotating 38,852 protein-coding genes of which 25% appear ash specific when compared with the genomes of ten other plant species. Analyses of paralogous genes suggest a whole-genome duplication shared with olive (Olea europaea, Oleaceae). We also re-sequence 37 F. excelsior trees from Europe, finding evidence for apparent long-term decline in effective population size. Using our reference sequence, we re-analyse association transcriptomic data, yielding improved markers for reduced susceptibility to ash dieback. Surveys of these markers in British populations suggest that reduced susceptibility to ash dieback may be more widespread in Great Britain than in Denmark. We also present evidence that susceptibility of trees to H. fraxineus is associated with their iridoid glycoside levels. This rapid, integrated, multidisciplinary research response to an emerging health threat in a non-model organism opens the way for mitigation of the epidemic.


Assuntos
Fraxinus/genética , Predisposição Genética para Doença/genética , Variação Genética , Genoma de Planta/genética , Doenças das Plantas/genética , Árvores/genética , Ascomicetos/patogenicidade , Sequência Conservada/genética , Dinamarca , Fraxinus/microbiologia , Genes de Plantas/genética , Genômica , Glicosídeos Iridoides/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/genética , Densidade Demográfica , Análise de Sequência de DNA , Especificidade da Espécie , Transcriptoma , Árvores/microbiologia , Reino Unido
6.
Proc Natl Acad Sci U S A ; 117(18): 9822-9831, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32317381

RESUMO

Legumes tend to be nodulated by competitive rhizobia that do not maximize nitrogen (N2) fixation, resulting in suboptimal yields. Rhizobial nodulation competitiveness and effectiveness at N2 fixation are independent traits, making their measurement extremely time-consuming with low experimental throughput. To transform the experimental assessment of rhizobial competitiveness and effectiveness, we have used synthetic biology to develop reporter plasmids that allow simultaneous high-throughput measurement of N2 fixation in individual nodules using green fluorescent protein (GFP) and barcode strain identification (Plasmid ID) through next generation sequencing (NGS). In a proof-of-concept experiment using this technology in an agricultural soil, we simultaneously monitored 84 different Rhizobium leguminosarum strains, identifying a supercompetitive and highly effective rhizobial symbiont for peas. We also observed a remarkable frequency of nodule coinfection by rhizobia, with mixed occupancy identified in ∼20% of nodules, containing up to six different strains. Critically, this process can be adapted to multiple Rhizobium-legume symbioses, soil types, and environmental conditions to permit easy identification of optimal rhizobial inoculants for field testing to maximize agricultural yield.


Assuntos
Fabaceae/genética , Fixação de Nitrogênio/genética , Rhizobium leguminosarum/genética , Simbiose/genética , Fabaceae/metabolismo , Fabaceae/microbiologia , Proteínas de Fluorescência Verde/genética , Sequenciamento de Nucleotídeos em Larga Escala , Nitrogênio/metabolismo , Pisum sativum/genética , Pisum sativum/metabolismo , Plasmídeos/genética , Rhizobium leguminosarum/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Microbiologia do Solo , Biologia Sintética
7.
BMC Genomics ; 22(1): 166, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750297

RESUMO

BACKGROUND: Transcriptomics is being increasingly applied to generate new insight into the interactions between plants and their pathogens. For the wheat yellow (stripe) rust pathogen (Puccinia striiformis f. sp. tritici, Pst) RNA-based sequencing (RNA-Seq) has proved particularly valuable, overcoming the barriers associated with its obligate biotrophic nature. This includes the application of RNA-Seq approaches to study Pst and wheat gene expression dynamics over time and the Pst population composition through the use of a novel RNA-Seq based surveillance approach called "field pathogenomics". As a dual RNA-Seq approach, the field pathogenomics technique also provides gene expression data from the host, giving new insight into host responses. However, this has created a wealth of data for interrogation. RESULTS: Here, we used the field pathogenomics approach to generate 538 new RNA-Seq datasets from Pst-infected field wheat samples, doubling the amount of transcriptomics data available for this important pathosystem. We then analysed these datasets alongside 66 RNA-Seq datasets from four Pst infection time-courses and 420 Pst-infected plant field and laboratory samples that were publicly available. A database of gene expression values for Pst and wheat was generated for each of these 1024 RNA-Seq datasets and incorporated into the development of the rust expression browser ( http://www.rust-expression.com ). This enables for the first time simultaneous 'point-and-click' access to gene expression profiles for Pst and its wheat host and represents the largest database of processed RNA-Seq datasets available for any of the three Puccinia wheat rust pathogens. We also demonstrated the utility of the browser through investigation of expression of putative Pst virulence genes over time and examined the host plants response to Pst infection. CONCLUSIONS: The rust expression browser offers immense value to the wider community, facilitating data sharing and transparency and the underlying database can be continually expanded as more datasets become publicly available.


Assuntos
Basidiomycota , Transcriptoma , Basidiomycota/genética , Doenças das Plantas/genética , Triticum/genética , Virulência
8.
Plant Physiol ; 183(2): 468-482, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32184345

RESUMO

Disease resistance genes encoding nucleotide-binding and leucine-rich repeat (NLR) intracellular immune receptor proteins detect pathogens by the presence of pathogen effectors. Plant genomes typically contain hundreds of NLR-encoding genes. The availability of the hexaploid wheat (Triticum aestivum) cultivar Chinese Spring reference genome allows a detailed study of its NLR complement. However, low NLR expression and high intrafamily sequence homology hinder their accurate annotation. Here, we developed NLR-Annotator, a software tool for in silico NLR identification independent of transcript support. Although developed for wheat, we demonstrate the universal applicability of NLR-Annotator across diverse plant taxa. We applied our tool to wheat and combined it with a transcript-validated subset of genes from the reference gene annotation to characterize the structure, phylogeny, and expression profile of the NLR gene family. We detected 3,400 full-length NLR loci, of which 1,560 were confirmed as expressed genes with intact open reading frames. NLRs with integrated domains mostly group in specific subclades. Members of another subclade predominantly locate in close physical proximity to NLRs carrying integrated domains, suggesting a paired helper function. Most NLRs (88%) display low basal expression (in the lower 10 percentile of transcripts). In young leaves subjected to biotic stress, we found up-regulation of 266 of the NLRs To illustrate the utility of our tool for the positional cloning of resistance genes, we estimated the number of NLR genes within the intervals of mapped rust resistance genes. Our study will support the identification of functional resistance genes in wheat to accelerate the breeding and engineering of disease-resistant varieties.


Assuntos
Software , Resistência à Doença , Genoma de Planta/genética , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Triticum/metabolismo , Triticum/microbiologia
9.
Genome Res ; 27(5): 885-896, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28420692

RESUMO

Advances in genome sequencing and assembly technologies are generating many high-quality genome sequences, but assemblies of large, repeat-rich polyploid genomes, such as that of bread wheat, remain fragmented and incomplete. We have generated a new wheat whole-genome shotgun sequence assembly using a combination of optimized data types and an assembly algorithm designed to deal with large and complex genomes. The new assembly represents >78% of the genome with a scaffold N50 of 88.8 kb that has a high fidelity to the input data. Our new annotation combines strand-specific Illumina RNA-seq and Pacific Biosciences (PacBio) full-length cDNAs to identify 104,091 high-confidence protein-coding genes and 10,156 noncoding RNA genes. We confirmed three known and identified one novel genome rearrangements. Our approach enables the rapid and scalable assembly of wheat genomes, the identification of structural variants, and the definition of complete gene models, all powerful resources for trait analysis and breeding of this key global crop.


Assuntos
Mapeamento de Sequências Contíguas/métodos , Genoma de Planta , Anotação de Sequência Molecular/métodos , Proteínas de Plantas/genética , Translocação Genética , Triticum/genética , Algoritmos , Mapeamento de Sequências Contíguas/normas , Anotação de Sequência Molecular/normas , Polimorfismo Genético , Poliploidia
10.
Bioinformatics ; 35(20): 4147-4155, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30903186

RESUMO

MOTIVATION: Modern genomic breeding methods rely heavily on very large amounts of phenotyping and genotyping data, presenting new challenges in effective data management and integration. Recently, the size and complexity of datasets have increased significantly, with the result that data are often stored on multiple systems. As analyses of interest increasingly require aggregation of datasets from diverse sources, data exchange between disparate systems becomes a challenge. RESULTS: To facilitate interoperability among breeding applications, we present the public plant Breeding Application Programming Interface (BrAPI). BrAPI is a standardized web service API specification. The development of BrAPI is a collaborative, community-based initiative involving a growing global community of over a hundred participants representing several dozen institutions and companies. Development of such a standard is recognized as critical to a number of important large breeding system initiatives as a foundational technology. The focus of the first version of the API is on providing services for connecting systems and retrieving basic breeding data including germplasm, study, observation, and marker data. A number of BrAPI-enabled applications, termed BrAPPs, have been written, that take advantage of the emerging support of BrAPI by many databases. AVAILABILITY AND IMPLEMENTATION: More information on BrAPI, including links to the specification, test suites, BrAPPs, and sample implementations is available at https://brapi.org/. The BrAPI specification and the developer tools are provided as free and open source.


Assuntos
Melhoramento Vegetal , Software , Interface Usuário-Computador , Genômica
11.
Proc Natl Acad Sci U S A ; 114(6): E913-E921, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28096351

RESUMO

Comprehensive reverse genetic resources, which have been key to understanding gene function in diploid model organisms, are missing in many polyploid crops. Young polyploid species such as wheat, which was domesticated less than 10,000 y ago, have high levels of sequence identity among subgenomes that mask the effects of recessive alleles. Such redundancy reduces the probability of selection of favorable mutations during natural or human selection, but also allows wheat to tolerate high densities of induced mutations. Here we exploited this property to sequence and catalog more than 10 million mutations in the protein-coding regions of 2,735 mutant lines of tetraploid and hexaploid wheat. We detected, on average, 2,705 and 5,351 mutations per tetraploid and hexaploid line, respectively, which resulted in 35-40 mutations per kb in each population. With these mutation densities, we identified an average of 23-24 missense and truncation alleles per gene, with at least one truncation or deleterious missense mutation in more than 90% of the captured wheat genes per population. This public collection of mutant seed stocks and sequence data enables rapid identification of mutations in the different copies of the wheat genes, which can be combined to uncover previously hidden variation. Polyploidy is a central phenomenon in plant evolution, and many crop species have undergone recent genome duplication events. Therefore, the general strategy and methods developed herein can benefit other polyploid crops.


Assuntos
Genoma de Planta/genética , Mutação , Poliploidia , Triticum/genética , Análise Mutacional de DNA/métodos , Evolução Molecular , Exoma/genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Seleção Genética
12.
Funct Integr Genomics ; 19(6): 853-866, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31115762

RESUMO

Wheat grain development is a robust biological process that largely determines grain quality and yield. In this study, we investigated the grain transcriptome of winter wheat cv. Xiaoyan-6 at four developmental stages (5, 10, 15, and 20 days post-anthesis), using high-throughput RNA sequencing (RNA-Seq). We identified 427 grain-specific transcription factors (TFs) and 1653 differentially expressed TFs during grain development as well as a grain co-expression regulation network (GrainNet) of the TFs and their predicted co-expressed genes. Our study identified ten putative key TFs and the predicted regulatory genes of these TFs in wheat grain development of Xiaoyan-6. The analysis was given a firm basis through the study of additional wheat tissues, including root, stem, leaf, flag leaf, grain, spikes (from wheat plants at booting or heading stages) to provide a dataset of 92,478 high-confidence protein-coding genes that were mostly evenly distributed among subgenomes, but unevenly distributed across each of the chromosomes or each of the seven homeologous groups. Within this larger framework of the transcriptomes, we identified 4659 grain-specific genes (SEGs) and 26,500 differentially expressed genes (DEGs) throughout grain development stages tested. The SEGs identified mainly associate with regulation and signaling-related biological processes, while the DEGs mainly involve in cellular component organization or biogenesis and nutrient reservoir activity during grain development of Xiaoyan-6. This study establishes new targets for modifying genes related to grain development and yield, to fine-tune expression in different varieties and environments.


Assuntos
Grão Comestível/genética , Redes Reguladoras de Genes , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Transcriptoma , Triticum/genética , Grão Comestível/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Triticum/crescimento & desenvolvimento
13.
Funct Integr Genomics ; 19(2): 295-309, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30446876

RESUMO

Wheat can adapt to most agricultural conditions across temperate regions. This success is the result of phenotypic plasticity conferred by a large and complex genome composed of three homoeologous genomes (A, B, and D). Although drought is a major cause of yield and quality loss in wheat, the adaptive mechanisms and gene networks underlying drought responses in the field remain largely unknown. Here, we addressed this by utilizing an interdisciplinary approach involving field water status phenotyping, sampling, and gene expression analyses. Overall, changes at the transcriptional level were reflected in plant spectral traits amenable to field-level physiological measurements, although changes in photosynthesis-related pathways were found likely to be under more complex post-transcriptional control. Examining homoeologous genes with a 1:1:1 relationship across the A, B, and D genomes (triads), we revealed a complex genomic architecture for drought responses under field conditions, involving gene homoeolog specialization, multiple gene clusters, gene families, miRNAs, and transcription factors coordinating these responses. Our results provide a new focus for genomics-assisted breeding of drought-tolerant wheat cultivars.


Assuntos
Secas , Genoma de Planta , Estresse Fisiológico , Triticum/genética , Melhoramento Vegetal/métodos , Locos de Características Quantitativas , Transcriptoma , Triticum/fisiologia
14.
Bioinformatics ; 31(15): 2565-7, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25819670

RESUMO

MOTIVATION: bio-samtools is a Ruby language interface to SAMtools, the highly popular library that provides utilities for manipulating high-throughput sequence alignments in the Sequence Alignment/Map format. Advances in Ruby, now allow us to improve the analysis capabilities and increase bio-samtools utility, allowing users to accomplish a large amount of analysis using a very small amount of code. bio-samtools can also be easily developed to include additional SAMtools methods and hence stay current with the latest SAMtools releases. RESULTS: We have added new Ruby classes for the MPileup and Variant Call Format (VCF) data formats emitted by SAMtools and introduced more analysis methods for variant analysis, including alternative allele calculation and allele frequency calling for SNPs. Our new implementation of bio-samtools also ensures that all the functionality of the SAMtools library is now supported and that bio-samtools can be easily extended to include future changes in SAMtools. bio-samtools 2 also provides methods that allow the user to directly produce visualization of alignment data.


Assuntos
Biologia Computacional/métodos , Genômica/métodos , Polimorfismo de Nucleotídeo Único/genética , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Software , Processamento Eletrônico de Dados , Frequência do Gene , Humanos
15.
Bioinformatics ; 31(12): 2038-9, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25649618

RESUMO

UNLABELLED: The design of genetic markers is of particular relevance in crop breeding programs. Despite many economically important crops being polyploid organisms, the current primer design tools are tailored for diploid species. Bread wheat, for instance, is a hexaploid comprising of three related genomes and the performance of genetic markers is diminished if the primers are not genome specific. PolyMarker is a pipeline that generates SNP markers by selecting candidate primers for a specified genome using local alignments and standard primer design tools to test the viability of the primers. A command line tool and a web interface are available to the community. AVAILABILITY AND IMPLEMENTATION: PolyMarker is available as a ruby BioGem: bio-polyploid-tools. Web interface: http://polymarker.tgac.ac.uk.


Assuntos
Primers do DNA/genética , Marcadores Genéticos , Polimorfismo de Nucleotídeo Único/genética , Poliploidia , Análise de Sequência de DNA/métodos , Software , Triticum/genética
16.
Plant Biotechnol J ; 13(5): 613-24, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25382230

RESUMO

The identification of genetic markers linked to genes of agronomic importance is a major aim of crop research and breeding programmes. Here, we identify markers for Yr15, a major disease resistance gene for wheat yellow rust, using a segregating F2 population. After phenotyping, we implemented RNA sequencing (RNA-Seq) of bulked pools to identify single-nucleotide polymorphisms (SNP) associated with Yr15. Over 27 000 genes with SNPs were identified between the parents, and then classified based on the results from the sequenced bulks. We calculated the bulk frequency ratio (BFR) of SNPs between resistant and susceptible bulks, selecting those showing sixfold enrichment/depletion in the corresponding bulks (BFR > 6). Using additional filtering criteria, we reduced the number of genes with a putative SNP to 175. The 35 SNPs with the highest BFR values were converted into genome-specific KASP assays using an automated bioinformatics pipeline (PolyMarker) which circumvents the limitations associated with the polyploid wheat genome. Twenty-eight assays were polymorphic of which 22 (63%) mapped in the same linkage group as Yr15. Using these markers, we mapped Yr15 to a 0.77-cM interval. The three most closely linked SNPs were tested across varieties and breeding lines representing UK elite germplasm. Two flanking markers were diagnostic in over 99% of lines tested, thus providing a reliable haplotype for marker-assisted selection in these breeding programmes. Our results demonstrate that the proposed methodology can be applied in polyploid F2 populations to generate high-resolution genetic maps across target intervals.


Assuntos
Basidiomycota/fisiologia , Doenças das Plantas/imunologia , Polimorfismo de Nucleotídeo Único/genética , Triticum/genética , Sequência de Bases , Cruzamento , Mapeamento Cromossômico , Resistência à Doença , Ligação Genética , Marcadores Genéticos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Poliploidia , RNA de Plantas/química , RNA de Plantas/genética , Análise de Sequência de RNA , Triticum/imunologia
17.
PLoS Pathog ; 8(5): e1002730, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22693449

RESUMO

Influenza viruses are characterized by an ability to cross species boundaries and evade host immunity, sometimes with devastating consequences. The 2009 pandemic of H1N1 influenza A virus highlights the importance of pigs in influenza emergence, particularly as intermediate hosts by which avian viruses adapt to mammals before emerging in humans. Although segment reassortment has commonly been associated with influenza emergence, an expanded host-range is also likely to be associated with the accumulation of specific beneficial point mutations. To better understand the mechanisms that shape the genetic diversity of avian-like viruses in pigs, we studied the evolutionary dynamics of an Eurasian Avian-like swine influenza virus (EA-SIV) in naïve and vaccinated pigs linked by natural transmission. We analyzed multiple clones of the hemagglutinin 1 (HA1) gene derived from consecutive daily viral populations. Strikingly, we observed both transient and fixed changes in the consensus sequence along the transmission chain. Hence, the mutational spectrum of intra-host EA-SIV populations is highly dynamic and allele fixation can occur with extreme rapidity. In addition, mutations that could potentially alter host-range and antigenicity were transmitted between animals and mixed infections were commonplace, even in vaccinated pigs. Finally, we repeatedly detected distinct stop codons in virus samples from co-housed pigs, suggesting that they persisted within hosts and were transmitted among them. This implies that mutations that reduce viral fitness in one host, but which could lead to fitness benefits in a novel host, can circulate at low frequencies.


Assuntos
Aviadenovirus/genética , Evolução Molecular , Vírus da Influenza A Subtipo H1N1/genética , Infecções por Orthomyxoviridae/virologia , Doenças dos Suínos/virologia , Animais , Anticorpos Antivirais/imunologia , Aviadenovirus/imunologia , Clonagem Molecular , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza , Infecções por Orthomyxoviridae/imunologia , Suínos , Doenças dos Suínos/imunologia , Vacinação , Eliminação de Partículas Virais
18.
Database (Oxford) ; 20232023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971714

RESUMO

Diploid A-genome wheat (einkorn wheat) presents a nutrition-rich option as an ancient grain crop and a resource for the improvement of bread wheat against abiotic and biotic stresses. Realizing the importance of this wheat species, reference-level assemblies of two einkorn wheat accessions were generated (wild and domesticated). This work reports an einkorn genome database that provides an interface to the cereals research community to perform comparative genomics, applied genetics and breeding research. It features queries for annotated genes, the use of a recent genome browser release, and the ability to search for sequence alignments using a modern BLAST interface. Other features include a comparison of reference einkorn assemblies with other wheat cultivars through genomic synteny visualization and an alignment visualization tool for BLAST results. Altogether, this resource will help wheat research and breeding. Database URL  https://wheat.pw.usda.gov/GG3/pangenome.


Assuntos
Genoma de Planta , Triticum , Triticum/genética , Genoma de Planta/genética , Melhoramento Vegetal , Genômica/métodos , Estudos de Associação Genética
19.
Commun Biol ; 3(1): 712, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239669

RESUMO

Crop productivity must increase at unprecedented rates to meet the needs of the growing worldwide population. Exploiting natural variation for the genetic improvement of crops plays a central role in increasing productivity. Although current genomic technologies can be used for high-throughput identification of genetic variation, methods for efficiently exploiting this genetic potential in a targeted, systematic manner are lacking. Here, we developed a haplotype-based approach to identify genetic diversity for crop improvement using genome assemblies from 15 bread wheat (Triticum aestivum) cultivars. We used stringent criteria to identify identical-by-state haplotypes and distinguish these from near-identical sequences (~99.95% identity). We showed that each cultivar shares ~59 % of its genome with other sequenced cultivars and we detected the presence of extended haplotype blocks containing hundreds to thousands of genes across all wheat chromosomes. We found that genic sequence alone was insufficient to fully differentiate between haplotypes, as were commonly used array-based genotyping chips due to their gene centric design. We successfully used this approach for focused discovery of novel haplotypes from a landrace collection and documented their potential for trait improvement in modern bread wheat. This study provides a framework for defining and exploiting haplotypes to increase the efficiency and precision of wheat breeding towards optimising the agronomic performance of this crucial crop.


Assuntos
Genoma de Planta/genética , Genômica/métodos , Haplótipos/genética , Melhoramento Vegetal/métodos , Triticum/genética , Variação Genética/genética , Técnicas de Genotipagem
20.
Elife ; 92020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32208137

RESUMO

Understanding the function of genes within staple crops will accelerate crop improvement by allowing targeted breeding approaches. Despite their importance, a lack of genomic information and resources has hindered the functional characterisation of genes in major crops. The recent release of high-quality reference sequences for these crops underpins a suite of genetic and genomic resources that support basic research and breeding. For wheat, these include gene model annotations, expression atlases and gene networks that provide information about putative function. Sequenced mutant populations, improved transformation protocols and structured natural populations provide rapid methods to study gene function directly. We highlight a case study exemplifying how to integrate these resources. This review provides a helpful guide for plant scientists, especially those expanding into crop research, to capitalise on the discoveries made in Arabidopsis and other plants. This will accelerate the improvement of crops of vital importance for food and nutrition security.


Assuntos
Arabidopsis/genética , Produtos Agrícolas/genética , Genoma de Planta/genética , Triticum/genética , Genômica/métodos , Anotação de Sequência Molecular/métodos , Melhoramento Vegetal/métodos , Poliploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA