Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38328032

RESUMO

Phenotypic diversity of cancer cells within tumors generated through bi-directional interactions with the tumor microenvironment has emerged as a major driver of disease progression and therapy resistance. Nutrient availability plays a critical role in determining phenotype, but whether specific nutrients elicit different responses on distinct phenotypes is poorly understood. Here we show, using melanoma as a model, that only MITF Low undifferentiated cells, but not MITF High cells, are competent to drive lipolysis in human adipocytes. In contrast to MITF High melanomas, adipocyte-derived free fatty acids are taken up by undifferentiated MITF Low cells via a fatty acid transporter (FATP)-independent mechanism. Importantly, oleic acid (OA), a monounsaturated long chain fatty acid abundant in adipose tissue and lymph, reprograms MITF Low undifferentiated melanoma cells to a highly invasive state by ligand-independent activation of AXL, a receptor tyrosine kinase associated with therapy resistance in a wide range of cancers. AXL activation by OA then drives SRC-dependent formation and nuclear translocation of a ß-catenin-CAV1 complex. The results highlight how a specific nutritional input drives phenotype-specific activation of a pro-metastasis program with implications for FATP-targeted therapies.

2.
Pest Manag Sci ; 79(9): 3159-3166, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37013915

RESUMO

BACKGROUND: Diaphorina citri Kuwayama is one of the most destructive citrus pests worldwide. It is controlled mainly through applications of conventional insecticides. Methodologies used to estimate resistance to insecticides do not correlate with field efficacy, and do not provide timely and reliable information to make decisions at a site where spraying is needed. The use of diagnostic doses with 30-min exposure is proposed for estimating the resistance of D. citri to imidacloprid, spinosad, malathion and chlorpyrifos at the orchard level. RESULTS: Under laboratory conditions, we estimated the lowest doses that caused 100% mortality within 30 min of exposure (diagnostic dose) in a susceptible D. citri colony. The diagnostic doses for imidacloprid, spinosad, malathion and chlorpyrifos were 7.4, 4.2, 1.0 and 5.5 mg a.i. L-1 , respectively. Under field conditions, we applied the diagnostic doses to D. citri feeding on Citrus aurantifolia Swingle at five localities in Michoacan state, Mexico (Nueva Italia, Santo Domingo, El Varal, Gambara and El Ceñidor). Additionally, the field efficacy of these insecticides against these populations was evaluated. A significant correlation between field efficacy and mortality was observed with the diagnostic doses for imidacloprid, malathion and chlorpyrifos (R2 ≥ 0.93). The correlation for spinosad could not be estimated because the mortality caused by the diagnostic dose and its field efficacy at all study sites was consistently >98%. CONCLUSIONS: Field efficacy and resistance were estimated based on the field diagnostic doses with 30-min exposure for all tested insecticides. Consequently, growers and pest management technicians can estimate the performance of the evaluated insecticides at the orchard level and before insecticide application. © 2023 Society of Chemical Industry.


Assuntos
Clorpirifos , Citrus , Hemípteros , Inseticidas , Animais , Inseticidas/farmacologia , Clorpirifos/farmacologia , Resistência a Inseticidas , Malation
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA