Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pathol ; 261(3): 309-322, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37650295

RESUMO

Rapidly progressive/crescentic glomerulonephritis (RPGN/CGN) involves the formation of glomerular crescents by maladaptive differentiation of parietal epithelial cells that leads to rapid loss of renal function. The molecular mechanisms of crescent formation are poorly understood. Therefore, new insights into molecular mechanisms could identify alternative therapeutic targets for RPGN/CGN. Analysis of kidney biopsies from patients with RPGN revealed increased interstitial, glomerular, and tubular expression of STING1, an accessory protein of the c-GAS-dependent DNA-sensing pathway, which was also observed in murine nephrotoxic nephritis induced by an anti-GBM antibody. STING1 was expressed by key cell types involved in RPGN and crescent formation such as glomerular parietal epithelial cells, and tubular cells as well as by inflammation accessory cells. In functional in vivo studies, Sting1-/- mice with nephrotoxic nephritis had lower kidney cytokine expression, milder kidney infiltration by innate and adaptive immune cells, and decreased disease severity. Pharmacological STING1 inhibition mirrored these findings. Direct STING1 agonism in parietal and tubular cells activated the NF-κB-dependent cytokine response and the interferon-induced genes (ISGs) program. These responses were also triggered in a STING1-dependent manner by the pro-inflammatory cytokine TWEAK. These results identify STING1 activation as a pathological mechanism in RPGN/CGN and TWEAK as an activator of STING1. Pharmacological strategies targeting STING1, or upstream regulators may therefore be potential alternatives to treat RPGN. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Glomerulonefrite , Nefrite , Humanos , Camundongos , Animais , Glomerulonefrite/genética , Rim/patologia , Glomérulos Renais/patologia , Doença Aguda , Citocinas/metabolismo
2.
Int J Mol Sci ; 24(9)2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175915

RESUMO

Cardiovascular disease (CVD) frequently complicates chronic kidney disease (CKD). The risk of all-cause mortality increases from 20% to 500% in patients who suffer both conditions; this is referred to as the so-called cardio-renal syndrome (CRS). Preclinical studies have described the key role of mitochondrial dysfunction in cardiovascular and renal diseases, suggesting that maintaining mitochondrial homeostasis is a promising therapeutic strategy for CRS. In this review, we explore the malfunction of mitochondrial homeostasis (mitochondrial biogenesis, dynamics, oxidative stress, and mitophagy) and how it contributes to the development and progression of the main vascular pathologies that could be affected by kidney injury and vice versa, and how this knowledge may guide the development of novel therapeutic strategies in CRS.


Assuntos
Síndrome Cardiorrenal , Insuficiência Renal Crônica , Humanos , Rim/metabolismo , Coração , Insuficiência Renal Crônica/metabolismo , Mitocôndrias
3.
Int J Mol Sci ; 21(11)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526941

RESUMO

Diabetic kidney disease is one of the fastest growing causes of death worldwide. Epigenetic regulators control gene expression and are potential therapeutic targets. There is functional interventional evidence for a role of DNA methylation and the histone post-translational modifications-histone methylation, acetylation and crotonylation-in the pathogenesis of kidney disease, including diabetic kidney disease. Readers of epigenetic marks, such as bromodomain and extra terminal (BET) proteins, are also therapeutic targets. Thus, the BD2 selective BET inhibitor apabetalone was the first epigenetic regulator to undergo phase-3 clinical trials in diabetic kidney disease with an endpoint of kidney function. The direct therapeutic modulation of epigenetic features is possible through pharmacological modulators of the specific enzymes involved and through the therapeutic use of the required substrates. Of further interest is the characterization of potential indirect effects of nephroprotective drugs on epigenetic regulation. Thus, SGLT2 inhibitors increase the circulating and tissue levels of ß-hydroxybutyrate, a molecule that generates a specific histone modification, ß-hydroxybutyrylation, which has been associated with the beneficial health effects of fasting. To what extent this impact on epigenetic regulation may underlie or contribute to the so-far unclear molecular mechanisms of cardio- and nephroprotection offered by SGLT2 inhibitors merits further in-depth studies.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Epigênese Genética , Histonas/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Acetilação , Animais , Ensaios Clínicos como Assunto , Metilação de DNA , Regulação da Expressão Gênica , Histonas/genética , Humanos , Processamento de Proteína Pós-Traducional , Quinazolinonas/farmacologia
4.
J Pathol ; 246(2): 191-204, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29984403

RESUMO

The chemokine CCL20 activates the CCR6 receptor and has been implicated in the pathogenesis of glomerular injury. However, it is unknown whether it contributes to acute kidney injury (AKI). We identified CCL20 as upregulated in a systems biology strategy combining transcriptomics of kidney tissue from experimental toxic folic acid-induced AKI and from stressed cultured tubular cells and have explored the expression and function of CCL20 in experimental and clinical AKI. CCL20 upregulation was confirmed in three models of kidney injury induced by a folic acid overdose, cisplatin or unilateral ureteral obstruction. In injured kidneys, CCL20 was expressed by tubular, endothelial, and interstitial cells, and was also upregulated in human kidneys with AKI. Urinary CCL20 was increased in human AKI and was associated with severity. The function of CCL20 in nephrotoxic folic acid-induced AKI was assessed by using neutralising anti-CCL20 antibodies or CCR6-deficient mice. CCL20/CCR6 targeting increased the severity of kidney failure and mortality. This was associated with more severe histological injury, nephrocalcinosis, capillary rarefaction, and fibrosis, as well as higher expression of tubular injury-associated genes. Surprisingly, mice with CCL20 blockade had a lower tubular proliferative response and a higher number of cells in the G2/M phase, suggesting impaired repair mechanisms. This may be related to a lower influx of Tregs, despite a milder inflammatory response in terms of chemokine expression and infiltration by IL-17+ cells and neutrophils. In conclusion, CCL20 has a nephroprotective role during AKI, both by decreasing tissue injury and by facilitating repair. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Injúria Renal Aguda/metabolismo , Anticorpos Neutralizantes/toxicidade , Quimiocina CCL20/metabolismo , Ácido Fólico , Túbulos Renais/efeitos dos fármacos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Adulto , Idoso , Animais , Estudos de Casos e Controles , Linhagem Celular , Quimiocina CCL20/antagonistas & inibidores , Quimiocina CCL20/genética , Quimiocina CCL20/imunologia , Quimiotaxia de Leucócito/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Fibrose , Perfilação da Expressão Gênica/métodos , Humanos , Imunidade Inata/efeitos dos fármacos , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Receptores CCR6/genética , Receptores CCR6/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Biologia de Sistemas/métodos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Células Th17/efeitos dos fármacos , Células Th17/metabolismo , Adulto Jovem
5.
Clin Sci (Lond) ; 131(14): 1617-1629, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28667063

RESUMO

The KDIGO definition of chronic kidney disease (CKD) allowed a more detailed characterization of CKD causes, epidemiology and consequences. The picture that has emerged is worrisome from the point of view of translation. CKD was among the fastest growing causes of death in the past 20 years in age-adjusted terms. The gap between recent advances and the growing worldwide mortality appears to result from sequential roadblocks that limit the flow from basic research to clinical development (translational research type 1, T1), from clinical development to clinical practice (translational research T2) and result in deficient widespread worldwide implementation of already available medical advances (translational research T3). We now review recent advances and novel concepts that have the potential to change the practice of nephrology in order to improve the outcomes of the maximal number of individuals in the shortest possible interval. These include: (i) updating the CKD concept, shifting the emphasis to the identification, risk stratification and care of early CKD and redefining the concept of aging-associated 'physiological' decline of renal function; (ii) advances in the characterization of aetiological factors, including challenging the concept of hypertensive nephropathy, the better definition of the genetic contribution to CKD progression, assessing the role of the liquid biopsy in aetiological diagnosis and characterizing the role of drugs that may be applied to the earliest stages of injury, such as SGLT2 inhibitors in diabetic kidney disease (DKD); (iii) embracing the complexity of CKD as a network disease and (iv) exploring ways to optimize implementation of existing knowledge.


Assuntos
Insuficiência Renal Crônica/diagnóstico , Pesquisa Translacional Biomédica/métodos , Nefropatias Diabéticas/tratamento farmacológico , Progressão da Doença , Diagnóstico Precoce , Predisposição Genética para Doença , Taxa de Filtração Glomerular , Humanos , Testes de Função Renal/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/fisiopatologia , Transportador 2 de Glucose-Sódio , Inibidores do Transportador 2 de Sódio-Glicose
6.
Arch Toxicol ; 91(4): 1925-1939, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27585667

RESUMO

Cyclosporine A (CsA) successfully prevents allograft rejection, but nephrotoxicity is still a dose-limiting adverse effect. TLR4 activation promotes kidney damage but whether this innate immunity receptor mediates CsA nephrotoxicity is unknown. The in vivo role of TLR4 during CsA nephrotoxicity was studied in mice co-treated with CsA and the TLR4 inhibitor TAK242 and also in TLR4-/- mice. CsA-induced renal TLR4 expression in wild-type mice. Pharmacological or genetic targeting of TLR4 reduced the activation of proinflammatory signaling, including JNK/c-jun, JAK2/STAT3, IRE1α and NF-κB and the expression of Fn14. Expression of proinflammatory factors and cytokines was also decreased, and kidney monocyte and lymphocyte influx was prevented. TLR4 inhibition also reduced tubular damage and drastically prevented the development of kidney fibrosis. In vivo and in vitro CsA promoted secretion of the TLR ligand HMGB1 by tubular cells upstream of TLR4 activation, and prevention of HMGB1 secretion significantly reduced CsA-induced synthesis of MCP-1, suggesting that HMGB1 may be one of the mediators of CsA-induced TLR4 activation. These results suggest that TLR4 is a potential pharmacological target in CsA nephrotoxicity.


Assuntos
Ciclosporina/toxicidade , Inflamação/induzido quimicamente , Rim/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Animais , Citocinas/metabolismo , Fibrose , Proteína HMGB1/metabolismo , Imunossupressores/toxicidade , Inflamação/patologia , Rim/citologia , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Sulfonamidas/farmacologia , Receptor 4 Toll-Like/genética
7.
J Cell Physiol ; 230(7): 1580-93, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25536182

RESUMO

The tubular epithelium may be intrinsically involved in promoting kidney injury by junctional instability, epithelial-mesenchymal transition (EMT) and extracellular matrix remodelling. In this work, we investigated whether the pleiotropic and proinflammatory cytokine tumor necrosis factor-like weak inducer of apoptosis (TWEAK), could be able to disturb junctional protein expression and to induce EMT of tubular cells. In cultured murine proximal tubular cells TWEAK induced phenotypic changes that were accompanied by F-actin redistribution, loss of epithelial adherent (E-cadherin, Cadherin-16, ß-catenin) and tight junction (ZO-1) proteins, and re-expression of the mesenchymal protein Vimentin. The transcriptional repressors Snail and HNF1ß were also modulated by TWEAK. In a murine model of obstructive renal pathology, TWEAK expression correlated with the appearance of the mesenchymal marker αSMA in kidney tubular cells. Mechanistically, the epithelial changes induced by TWEAK, including loss of epithelial integrity and EMT, via Fn14 were TGF-ß1 independent, but mediated by several intracellular signaling systems, including the canonical NF-κB, ERK activation and the vitamin D receptor modulation. These results highlight potential contributions of TWEAK-induced inflammatory mechanisms that could unveil new pathogenic effects of TWEAK starting tubulointerstitial damage and fibrosis.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Túbulos Renais/citologia , NF-kappa B/metabolismo , Proteínas de Junções Íntimas/metabolismo , Fatores de Necrose Tumoral/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular , Citocina TWEAK , Cães , Células Epiteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Knockout , NF-kappa B/genética , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Insuficiência Renal/metabolismo , Proteínas de Junções Íntimas/genética , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/farmacologia
8.
Curr Opin Nephrol Hypertens ; 23(1): 93-100, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24257157

RESUMO

PURPOSE OF REVIEW: The tumor necrosis factor-like weak inducer of apoptosis (TWEAK) cytokine has been linked to kidney injury by functional studies in experimental animals, and has biomarker potential in kidney disease. RECENT FINDINGS: TWEAK was known to promote tubular cell injury and kidney inflammation. Recent studies have expanded these observations, identifying additional targets of TWEAK relevant to kidney injury. Thus, TWEAK upregulates the chemokine and cholesterol scavenger receptor CXCL16 and downregulates the antiaging and antifibrotic molecule Klotho in tubular cells. Furthermore, fibrogenic TWEAK actions on renal fibroblasts were described. TWEAK or factor-inducible molecule 14 targeting decreased the kidney fibrosis resulting from immune and nonimmune kidney injury induced by transient tubular or glomerular insults or by persistent urinary tract obstruction. TWEAK might also contribute to the link between chronic kidney disease and kidney cancer, as suggested by its role in other genitourinary cancers. Progress has also been made in TWEAK targeting. A phase I clinical trial showed that TWEAK targeting is well tolerated in humans, and an ongoing trial is exploring efficacy in lupus nephritis. Nanomolecules and inhibitors of epidermal growth factor receptor pathway may also protect from the adverse effects of TWEAK in the kidney. SUMMARY: These findings suggest that TWEAK targeting has clinical potential in kidney injury of immune and nonimmune origin.


Assuntos
Nefropatias/metabolismo , Rim/metabolismo , Fatores de Necrose Tumoral/metabolismo , Animais , Citocina TWEAK , Fibrose , Humanos , Mediadores da Inflamação/metabolismo , Rim/efeitos dos fármacos , Rim/imunologia , Rim/patologia , Nefropatias/tratamento farmacológico , Nefropatias/imunologia , Nefropatias/patologia , Terapia de Alvo Molecular , Transdução de Sinais , Inibidores do Fator de Necrose Tumoral , Agentes Urológicos/uso terapêutico
9.
Iran J Basic Med Sci ; 27(8): 1023-1032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911250

RESUMO

Objectives: The present study aimed to explore the mechanisms underlying the potency of the renoprotective effect of the EtOAc fraction of Limonium duriusculum (EALD) (Plumbaginaceae) against cyclosporine A (CsA), in comparison to vitamin E (Vit. E). Materials and Methods: In the in-vivo experiment, a model of CsA-induced nephrotoxicity was established by dosing male Wistar rats with 25 mg/kg, for 14 days. The protective effect of EALD was investigated through pretreatment of rats with a dose of 200 mg/kg for 14 days, compared to the oral administration of Vit. E at 100 mg/kg. Renal function and markers of oxidative stress were then assessed. Furthermore, a complementary in-vitro study was carried out to evaluate CsA-induced endoplasmic reticulum stress (ERS) and inflammation on cell culture (3T3 cells and MCT cells) using western blot and quantitative RT-PCR.. Results: Pretreatment of rats with EALD significantly attenuated the elevated levels of renal dysfunction markers (BUN, creatinine) and suppressed malondialdehyde (MDA) levels; It also significantly regulated the changes in superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxydase (GPx), and glutathione S-transferase (GST) levels as compared to Vit. E, demonstrating a more effective recovery in renal tissues. Treatment of cells with CsA was linked to the expression of ERS and inflammatory markers activating transcription factor (ATF4), inositol-requiring enzyme 1α (IRE1α), binding immunoglobulin protein (BiP), and monocyte chemoattractant protein-1 (MCP1). In contrast, pretreatment of cells with EALD resulted in a significant decrease in both ERS and inflammatory markers. Conclusion: These findings indicate the renoprotective potential of L. duriusculum, as it demonstrated the ability to ameliorate CsA-induced renal dysfunction through its distinctive antioxidant properties.

10.
Toxicol Appl Pharmacol ; 272(3): 825-41, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23958496

RESUMO

The calcineurin inhibitors (CNIs) cyclosporine (CsA) and tacrolimus are key drugs in current immunosuppressive regimes for solid organ transplantation. However, they are nephrotoxic and promote death and profibrotic responses in tubular cells. Moreover, renal inflammation is observed in CNI nephrotoxicity but the mechanisms are poorly understood. We have now studied molecular pathways leading to inflammation elicited by the CNIs in cultured and kidney tubular cells. Both CsA and tacrolimus elicited a proinflammatory response in tubular cells as evidenced by a transcriptomics approach. Transcriptomics also suggested several potential pathways leading to expression of proinflammatory genes. Validation and functional studies disclosed that in tubular cells, CNIs activated protein kinases such as the JAK2/STAT3 and TAK1/JNK/AP-1 pathways, TLR4/Myd88/IRAK signaling and the Unfolded Protein Response (UPR) to promote NF-κB activation and proinflammatory gene expression. CNIs also activated an Nrf2/HO-1-dependent compensatory response and the Nrf2 activator sulforaphane inhibited JAK2 and JNK activation and inflammation. A murine model of CsA nephrotoxicity corroborated activation of the proinflammatory pathways identified in cell cultures. Human CNIs nephrotoxicity was also associated with NF-κB, STAT3 and IRE1α activation. In conclusion, CNIs recruit several intracellular pathways leading to previously non-described proinflammatory actions in renal tubular cells. Identification of these pathways provides novel clues for therapeutic intervention to limit CNIs nephrotoxicity.


Assuntos
Inibidores de Calcineurina , Mediadores da Inflamação/metabolismo , Janus Quinase 2/metabolismo , Túbulos Renais/metabolismo , MAP Quinase Quinase 4/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Adulto , Idoso , Animais , Calcineurina/metabolismo , Ciclosporina/farmacologia , Humanos , Mediadores da Inflamação/fisiologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , NF-kappa B/fisiologia , Nefrite/metabolismo , Nefrite/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tacrolimo/farmacologia
11.
Nat Rev Nephrol ; 19(5): 281-299, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36959481

RESUMO

Disorders of cell number that result from an imbalance between the death of parenchymal cells and the proliferation or recruitment of maladaptive cells contributes to the pathogenesis of kidney disease. Acute kidney injury can result from an acute loss of kidney epithelial cells. In chronic kidney disease, loss of kidney epithelial cells leads to glomerulosclerosis and tubular atrophy, whereas interstitial inflammation and fibrosis result from an excess of leukocytes and myofibroblasts. Other conditions, such as acquired cystic disease and kidney cancer, are characterized by excess numbers of cyst wall and malignant cells, respectively. Cell death modalities act to clear unwanted cells, but disproportionate responses can contribute to the detrimental loss of kidney cells. Indeed, pathways of regulated cell death - including apoptosis and necrosis - have emerged as central events in the pathogenesis of various kidney diseases that may be amenable to therapeutic intervention. Modes of regulated necrosis, such as ferroptosis, necroptosis and pyroptosis may cause kidney injury directly or through the recruitment of immune cells and stimulation of inflammatory responses. Importantly, multiple layers of interconnections exist between different modalities of regulated cell death, including shared triggers, molecular components and protective mechanisms.


Assuntos
Injúria Renal Aguda , Ferroptose , Humanos , Apoptose/fisiologia , Rim/metabolismo , Necrose/metabolismo , Necrose/patologia , Injúria Renal Aguda/metabolismo
12.
Front Immunol ; 14: 1324996, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077379

RESUMO

Acute kidney injury (AKI) frequently occurs in patients with chronic kidney disease (CKD) and in turn, may cause or accelerate CKD. Therapeutic options in AKI are limited and mostly relate to replacement of kidney function until the kidneys recover spontaneously. Furthermore, there is no treatment that prevents the AKI-to-CKD transition. Regulated necrosis has recently emerged as key player in kidney injury. Specifically, there is functional evidence for a role of necroptosis, ferroptosis or pyroptosis in AKI and the AKI-to-CKD progression. Regulated necrosis may be proinflammatory and immunogenic, triggering subsequent waves of regulated necrosis. In a paradigmatic murine nephrotoxic AKI model, a first wave of ferroptosis was followed by recruitment of inflammatory cytokines such as TWEAK that, in turn, triggered a secondary wave of necroptosis which led to persistent kidney injury and decreased kidney function. A correct understanding of the specific forms of regulated necrosis, their timing and intracellular molecular pathways may help design novel therapeutic strategies to prevent or treat AKI at different stages of the condition, thus improving patient survival and the AKI-to-CKD transition. We now review key regulated necrosis pathways and their role in AKI and the AKI-to-CKD transition both at the time of the initial insult and during the repair phase following AKI.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Apoptose , Injúria Renal Aguda/metabolismo , Necrose , Insuficiência Renal Crônica/metabolismo , Inflamação/complicações
13.
Antioxidants (Basel) ; 12(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38136175

RESUMO

Peritoneal dialysis (PD) is a current replacement therapy for end-stage kidney diseases (ESKDs). However, long-term exposure to PD fluids may lead to damage of the peritoneal membrane (PM) through mechanisms involving the activation of the inflammatory response and mesothelial-to-mesenchymal transition (MMT), leading to filtration failure. Peritoneal damage depends on a complex interaction among external stimuli, intrinsic properties of the PM, and subsequent activities of the local innate-adaptive immune system. Epigenetic drugs targeting bromodomain and extra-terminal domain (BET) proteins have shown beneficial effects on different experimental preclinical diseases, mainly by inhibiting proliferative and inflammatory responses. However the effect of BET inhibition on peritoneal damage has not been studied. To this aim, we have evaluated the effects of treatment with the BET inhibitor JQ1 in a mouse model of peritoneal damage induced by chlorhexidine gluconate (CHX). We found that JQ1 ameliorated the CHX-induced PM thickness and inflammatory cell infiltration. Moreover, JQ1 decreased gene overexpression of proinflammatory and profibrotic markers, together with an inhibition of the nuclear factor-κB (NF-κB) pathway. Additionally, JQ1 blocked the activation of nuclear factor erythroid 2-related factor 2 (NRF2) and restored changes in the mRNA expression levels of NADPH oxidases (NOX1 and NOX4) and NRF2/target antioxidant response genes. To corroborate the in vivo findings, we evaluated the effects of the BET inhibitor JQ1 on PD patients' effluent-derived primary mesothelial cells and on the MeT-5A cell line. JQ1 inhibited tumor necrosis factor-α (TNF-α)-induced proinflammatory gene upregulation and restored MMT phenotype changes, together with the downmodulation of oxidative stress. Taken together, these results suggest that BET inhibitors may be a potential therapeutic option to ameliorate peritoneal damage.

14.
Clin Kidney J ; 15(11): 1973-1980, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36324999

RESUMO

Systemic lupus erythematosus (SLE) is a chronic and inflammatory autoimmune disease of unknown origin that may cause kidney disease, i.e. lupus nephritis (LN). Within a wider trend towards an expanding field of genetic causes of kidney disease, two recent reports have emphasized the role of Mendelian autoimmune disorders in causing LN both in children and in young adults. Loss-of-function (LOF) variants of tumor necrosis factor alpha-induced protein 3 (TNFAIP3) and gain of function (GOF) variants of Toll-like receptor 7 (TLR7) cause SLE and LN, respectively. Interestingly, both genes regulate the same signaling route, as A20, the protein encoded by TNFAIP3, inhibits nuclear factor ĸB (NF-ĸB) activation while TLR7 promoted NF-ĸB activation. Moreover, TNFAIP3 and TLR7 variants are relatively frequent, potentially contributing to polygenic risk for LN. Finally, they both may be expressed by kidney cells, potentially contributing to the severity of kidney injury in persons who have already developed autoimmunity. The fact that both genes regulate the same pathway may lead to novel therapeutic approaches targeting the shared molecular pathway.

15.
Front Pharmacol ; 13: 987979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386242

RESUMO

The type I interferon (TI-IFN) pathway regulates innate immunity, inflammation, and apoptosis during infection. However, the contribution of the TI-IFN pathway or upstream signaling pathways to tubular injury in kidney disease is poorly understood. Upon observing evidence of activation of upstream regulators of the TI-IFN pathway in a transcriptomics analysis of murine kidney tubulointerstitial injury, we have now addressed the impact of the TI-IFN and upstream signaling pathways on kidney tubulointerstitial injury. In cultured tubular cells and kidney tissue, IFNα/ß binding to IFNAR activated the TI-IFN pathway and recruited antiviral interferon-stimulated genes (ISG) and NF-κB-associated proinflammatory responses. TWEAK and lipopolysaccharide (LPS) signaled through TBK1/IKKε and IRF3 to activate both ISGs and NF-κB. In addition, TWEAK recruited TLR4 to stimulate TBK1/IKKε-dependent ISG and inflammatory responses. Dual pharmacological inhibition of TBK1/IKKε with amlexanox decreased TWEAK- or LPS-induced ISG and cytokine responses, as well as cell death induced by a complex inflammatory milieu that included TWEAK. TBK1 or IRF3 siRNA prevented the TWEAK-induced ISG and inflammatory gene expression while IKKε siRNA did not. In vivo, kidney IFNAR and IFNß were increased in murine LPS and folic acid nephrotoxicity while IFNAR was increased in human kidney biopsies with tubulointerstitial damage. Inhibition of TBK1/IKKε with amlexanox or IFNAR neutralization decreased TI-IFN pathway activation and protected from kidney injury induced by folic acid or LPS. In conclusion, TI-IFNs, TWEAK, and LPS engage interrelated proinflammatory and antiviral responses in tubular cells. Moreover, inhibition of TBK1/IKKε with amlexanox, and IFNAR targeting, may protect from tubulointerstitial kidney injury.

16.
Antioxidants (Basel) ; 11(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35883847

RESUMO

Acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected conditions, and CKD is projected to become the fifth leading global cause of death by 2040. New therapeutic approaches are needed. Mitochondrial dysfunction and oxidative stress have emerged as drivers of kidney injury in acute and chronic settings, promoting the AKI-to-CKD transition. In this work, we review the role of mitochondrial dysfunction and oxidative stress in AKI and CKD progression and discuss novel therapeutic approaches. Specifically, evidence for mitochondrial dysfunction in diverse models of AKI (nephrotoxicity, cytokine storm, and ischemia-reperfusion injury) and CKD (diabetic kidney disease, glomerulopathies) is discussed; the clinical implications of novel information on the key role of mitochondria-related transcriptional regulators peroxisome proliferator-activated receptor gamma coactivator 1-alpha, transcription factor EB (PGC-1α, TFEB), and carnitine palmitoyl-transferase 1A (CPT1A) in kidney disease are addressed; the current status of the clinical development of therapeutic approaches targeting mitochondria are updated; and barriers to the clinical development of mitochondria-targeted interventions are discussed, including the lack of clinical diagnostic tests that allow us to categorize the baseline renal mitochondrial dysfunction/mitochondrial oxidative stress and to monitor its response to therapeutic intervention. Finally, key milestones for further research are proposed.

17.
Antioxidants (Basel) ; 11(2)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35204184

RESUMO

Chronic kidney disease (CKD) can be considered as a clinical model for premature aging. However, non-invasive biomarkers to detect early kidney damage and the onset of a senescent phenotype are lacking. Most of the preclinical senescence studies in aging have been done in very old mice. Furthermore, the precise characterization and over-time development of age-related senescence in the kidney remain unclear. To address these limitations, the age-related activation of cellular senescence-associated mechanisms and their correlation with early structural changes in the kidney were investigated in 3- to 18-month-old C57BL6 mice. Inflammatory cell infiltration was observed by 12 months, whereas tubular damage and collagen accumulation occurred later. Early activation of cellular-senescence-associated mechanisms was found in 12-month-old mice, characterized by activation of the DNA-damage-response (DDR), mainly in tubular cells; activation of the antioxidant NRF2 pathway; and klotho downregulation. However, induction of tubular-cell-cycle-arrest (CCA) and overexpression of renal senescent-associated secretory phenotype (SASP) components was only found in 18-month-old mice. In aging mice, both inflammation and oxidative stress (marked by elevated lipid peroxidation and NRF2 inactivation) remained increased. These findings support the hypothesis that prolonged DDR and CCA, loss of nephroprotective factors (klotho), and dysfunctional redox regulatory mechanisms (NRF2/antioxidant defense) can be early drivers of age-related kidney-damage progression.

18.
Mol Cell Endocrinol ; 529: 111254, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798633

RESUMO

The most classical view of the renin-angiotensin system (RAS) emphasizes its role as an endocrine regulator of sodium balance and blood pressure. However, it has long become clear that the RAS has pleiotropic actions that contribute to organ damage, including modulation of inflammation. Angiotensin II (Ang II) activates angiotensin type 1 receptors (AT1R) to promote an inflammatory response and organ damage. This represents the pathophysiological basis for the successful use of RAS blockers to prevent and treat kidney and heart disease. However, other RAS components could have a built-in capacity to brake proinflammatory responses. Angiotensin type 2 receptor (AT2R) activation can oppose AT1R actions, such as vasodilatation, but its involvement in modulation of inflammation has not been conclusively proven. Angiotensin-converting enzyme 2 (ACE2) can process Ang II to generate angiotensin-(1-7) (Ang-(1-7)), that activates the Mas receptor to exert predominantly anti-inflammatory responses depending on the context. We now review recent advances in the understanding of the interaction of the RAS with inflammation. Specific topics in which novel information became available recently include intracellular angiotensin receptors; AT1R posttranslational modifications by tissue transglutaminase (TG2) and anti-AT1R autoimmunity; RAS modulation of lymphoid vessels and T lymphocyte responses, especially of Th17 and Treg responses; interactions with toll-like receptors (TLRs), programmed necrosis, and regulation of epigenetic modulators (e.g. microRNAs and bromodomain and extraterminal domain (BET) proteins). We additionally discuss an often overlooked effect of the RAS on inflammation which is the downregulation of anti-inflammatory factors such as klotho, peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), transient receptor potential ankyrin 1 (TRPA1), SNF-related serine/threonine-protein kinase (SNRK), serine/threonine-protein phosphatase 6 catalytic subunit (Ppp6C) and n-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). Both transcription factors, such as nuclear factor κB (NF-κB), and epigenetic regulators, such as miRNAs are involved in downmodulation of anti-inflammatory responses. A detailed analysis of pathways and targets for downmodulation of anti-inflammatory responses constitutes a novel frontier in RAS research.


Assuntos
Angiotensina II/imunologia , Angiotensina I/imunologia , Inflamação/imunologia , Fragmentos de Peptídeos/imunologia , Sistema Renina-Angiotensina/imunologia , Equilíbrio Hidroeletrolítico/imunologia , Angiotensina I/genética , Angiotensina II/genética , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Autoimunidade , Pressão Sanguínea/genética , Pressão Sanguínea/imunologia , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/patologia , Rim/citologia , Rim/imunologia , Proteínas Klotho/genética , Proteínas Klotho/imunologia , Fragmentos de Peptídeos/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/imunologia , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/imunologia , Receptor Tipo 2 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/imunologia , Sistema Renina-Angiotensina/genética , Transdução de Sinais , Linfócitos T/citologia , Linfócitos T/imunologia , Equilíbrio Hidroeletrolítico/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-20953353

RESUMO

Members of the TNF superfamily participate in kidney disease. Tumor necrosis factor (TNF) and Fas ligand regulate renal cell survival and inflammation, and therapeutic targeting improves the outcome of experimental renal injury. TNF-related apoptosis-inducing ligand (TRAIL and its potential decoy receptor osteoprotegerin are the two most upregulated death-related genes in human diabetic nephropathy. TRAIL activates NF-kappaB in tubular cells and promotes apoptosis in tubular cells and podocytes, especially in a high-glucose environment. By contrast, osteoprotegerin plays a protective role against TRAIL-induced apoptosis. Another family member, TNF-like weak inducer of apoptosis (TWEAK induces inflammation and tubular cell death or proliferation, depending on the microenvironment. While TNF only activates canonical NF-kappaB signaling, TWEAK promotes both canonical and noncanonical NF-kappaB activation in tubular cells, regulating different inflammatory responses. TWEAK promotes the secretion of MCP-1 and RANTES through NF-kappaB RelA-containing complexes and upregulates CCl21 and CCL19 expression through NF-kappaB inducing kinase (NIK-) dependent RelB/NF-kappaB2 complexes. In vivo TWEAK promotes postnephrectomy compensatory renal cell proliferation in a noninflammatory milieu. However, in the inflammatory milieu of acute kidney injury, TWEAK promotes tubular cell death and inflammation. Therapeutic targeting of TNF superfamily cytokines, including multipronged approaches targeting several cytokines should be further explored.


Assuntos
Rim/lesões , Fatores de Necrose Tumoral/metabolismo , Animais , Apoptose , Proliferação de Células , Citocinas/metabolismo , Neuropatias Diabéticas/patologia , Proteína Ligante Fas/metabolismo , Regulação da Expressão Gênica , Humanos , Inflamação , Modelos Biológicos , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
20.
Toxins (Basel) ; 12(3)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121234

RESUMO

Multiple physiological variables change over time in a predictable and repetitive manner, guided by molecular clocks that respond to external and internal clues and are coordinated by a central clock. The kidney is the site of one of the most active peripheral clocks. Biological rhythms, of which the best known are circadian rhythms, are required for normal physiology of the kidneys and other organs. Chronodisruption refers to the chronic disruption of circadian rhythms leading to disease. While there is evidence that circadian rhythms may be altered in kidney disease and that altered circadian rhythms may accelerate chronic kidney disease (CKD) progression, there is no comprehensive review on chronodisruption and chronodisruptors in CKD and its manifestations. Indeed, the term chronodisruption has been rarely applied to CKD despite chronodisruptors being potential therapeutic targets in CKD patients. We now discuss evidence for chronodisruption in CKD and the impact of chronodisruption on CKD manifestations, identify potential chronodisruptors, some of them uremic toxins, and their therapeutic implications, and discuss current unanswered questions on this topic.


Assuntos
Transtornos Cronobiológicos , Ritmo Circadiano , Insuficiência Renal Crônica , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA