Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 184(23): 5693-5695, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34767774

RESUMO

The mitochondrial genome encodes proteins central to mitochondrial function; however, transcript-specific mechanistic studies of mitochondrial gene products have been difficult because of challenges in their experimental manipulation. Cruz-Zaragoza et al. provide a solution to this challenge, introducing an elegant system for efficient translational silencing of transcripts in human mitochondria.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Expressão Gênica , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Morfolinos , Organelas
2.
Cell ; 167(2): 308-310, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27716503

RESUMO

The dual genetic origin of mitochondrial respiratory chain complexes leads to the synthesis of subunits by mitochondrial and cytosolic ribosomes. Now, Richter-Dennerlein et al. report that membrane-integrated assembly factors associate with ribosome nascent chain complexes in human mitochondria to coordinate translational plasticity with the import of subunits from the cytosol.


Assuntos
Biossíntese de Proteínas , Ribossomos/metabolismo , Citosol/metabolismo , Humanos , Mitocôndrias/genética
3.
Nature ; 614(7946): 153-159, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697829

RESUMO

Mitochondria have crucial roles in cellular energetics, metabolism, signalling and quality control1-4. They contain around 1,000 different proteins that often assemble into complexes and supercomplexes such as respiratory complexes and preprotein translocases1,3-7. The composition of the mitochondrial proteome has been characterized1,3,5,6; however, the organization of mitochondrial proteins into stable and dynamic assemblies is poorly understood for major parts of the proteome1,4,7. Here we report quantitative mapping of mitochondrial protein assemblies using high-resolution complexome profiling of more than 90% of the yeast mitochondrial proteome, termed MitCOM. An analysis of the MitCOM dataset resolves >5,200 protein peaks with an average of six peaks per protein and demonstrates a notable complexity of mitochondrial protein assemblies with distinct appearance for respiration, metabolism, biogenesis, dynamics, regulation and redox processes. We detect interactors of the mitochondrial receptor for cytosolic ribosomes, of prohibitin scaffolds and of respiratory complexes. The identification of quality-control factors operating at the mitochondrial protein entry gate reveals pathways for preprotein ubiquitylation, deubiquitylation and degradation. Interactions between the peptidyl-tRNA hydrolase Pth2 and the entry gate led to the elucidation of a constitutive pathway for the removal of preproteins. The MitCOM dataset-which is accessible through an interactive profile viewer-is a comprehensive resource for the identification, organization and interaction of mitochondrial machineries and pathways.


Assuntos
Proteínas Fúngicas , Mitocôndrias , Proteínas Mitocondriais , Transporte Proteico , Proteoma , Saccharomyces cerevisiae , Proteínas de Transporte/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/metabolismo , Respiração Celular , Ribossomos , Conjuntos de Dados como Assunto
4.
BMC Biol ; 18(1): 2, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31907035

RESUMO

BACKGROUND: The mitochondrial pyruvate carrier (MPC) plays a central role in energy metabolism by transporting pyruvate across the inner mitochondrial membrane. Its heterodimeric composition and homology to SWEET and semiSWEET transporters set the MPC apart from the canonical mitochondrial carrier family (named MCF or SLC25). The import of the canonical carriers is mediated by the carrier translocase of the inner membrane (TIM22) pathway and is dependent on their structure, which features an even number of transmembrane segments and both termini in the intermembrane space. The import pathway of MPC proteins has not been elucidated. The odd number of transmembrane segments and positioning of the N-terminus in the matrix argues against an import via the TIM22 carrier pathway but favors an import via the flexible presequence pathway. RESULTS: Here, we systematically analyzed the import pathways of Mpc2 and Mpc3 and report that, contrary to an expected import via the flexible presequence pathway, yeast MPC proteins with an odd number of transmembrane segments and matrix-exposed N-terminus are imported by the carrier pathway, using the receptor Tom70, small TIM chaperones, and the TIM22 complex. The TIM9·10 complex chaperones MPC proteins through the mitochondrial intermembrane space using conserved hydrophobic motifs that are also required for the interaction with canonical carrier proteins. CONCLUSIONS: The carrier pathway can import paired and non-paired transmembrane helices and translocate N-termini to either side of the mitochondrial inner membrane, revealing an unexpected versatility of the mitochondrial import pathway for non-cleavable inner membrane proteins.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico
5.
EMBO J ; 34(7): 835-7, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25725020

RESUMO

Metabolic remodeling is a major determinant for many cell fate decisions, and a switch from respiration to aerobic glycolysis is generally considered as a hallmark of cancer cell transformation. Pyruvate is a key metabolite at the major junction of carbohydrate metabolism between cytosolic glycolysis and the mitochondrial Krebs cycle. In this issue of The EMBO Journal, Bender et al show that yeast cells regulate pyruvate uptake into mitochondria, and thus its metabolic fate, by expressing alternative pyruvate carrier complexes with different activities.


Assuntos
Proteínas de Transporte de Ânions/biossíntese , Proteínas de Membrana/biossíntese , Mitocôndrias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/biossíntese , Ácido Pirúvico/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte da Membrana Mitocondrial
6.
Biochim Biophys Acta Mol Cell Res ; 1864(4): 737-746, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27614134

RESUMO

The elaborate membrane architecture of mitochondria is a prerequisite for efficient respiration and ATP generation. The cristae membranes, invaginations of the inner mitochondrial membrane, represent a specialized compartment that harbors the complexes of the respiratory chain and the F1Fo-ATP synthase. Crista junctions form narrow openings that connect the cristae membranes to the inner boundary membrane. The mitochondrial contact site and cristae organizing system (MICOS) is located at crista junctions where it stabilizes membrane curvature and forms contact sites between the mitochondrial inner and outer membranes. MICOS is a large machinery, consisting of two dynamic subcomplexes that are anchored in the inner membrane and expose domains to the intermembrane space. The functions of MICOS in mitochondrial membrane architecture and biogenesis are influenced by numerous interaction partners and the phospholipid environment.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/metabolismo , ATPases Translocadoras de Prótons/genética , Animais , DNA Mitocondrial/metabolismo , Regulação da Expressão Gênica , Humanos , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/ultraestrutura , Fosfolipídeos/metabolismo , Ligação Proteica , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Especificidade da Espécie
7.
EMBO J ; 31(21): 4221-35, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-22990239

RESUMO

Accumulation of aggregation-prone misfolded proteins disrupts normal cellular function and promotes ageing and disease. Bacteria, fungi and plants counteract this by solubilizing and refolding aggregated proteins via a powerful cytosolic ATP-dependent bichaperone system, comprising the AAA+ disaggregase Hsp100 and the Hsp70-Hsp40 system. Metazoa, however, lack Hsp100 disaggregases. We show that instead the Hsp110 member of the Hsp70 superfamily remodels the human Hsp70-Hsp40 system to efficiently disaggregate and refold aggregates of heat and chemically denatured proteins in vitro and in cell extracts. This Hsp110 effect relies on nucleotide exchange, not on ATPase activity, implying ATP-driven chaperoning is not required. Knock-down of nematode Caenorhabditis elegans Hsp110, but not an unrelated nucleotide exchange factor, compromises dissolution of heat-induced protein aggregates and severely shortens lifespan after heat shock. We conclude that in metazoa, Hsp70-Hsp40 powered by Hsp110 nucleotide exchange represents the crucial disaggregation machinery that reestablishes protein homeostasis to counteract protein unfolding stress.


Assuntos
Caenorhabditis elegans/metabolismo , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Luciferases/metabolismo , Multimerização Proteica , Trifosfato de Adenosina/metabolismo , Animais , Imunofluorescência , Proteínas de Fluorescência Verde/metabolismo , Resposta ao Choque Térmico/fisiologia , Humanos , Hidrólise , Corpos de Inclusão , Desnaturação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
J Biol Chem ; 289(39): 27352-27362, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25124039

RESUMO

The majority of mitochondrial proteins are synthesized with amino-terminal signal sequences. The presequence translocase of the inner membrane (TIM23 complex) mediates the import of these preproteins. The essential TIM23 core complex closely cooperates with partner protein complexes like the presequence translocase-associated import motor and the respiratory chain. The inner mitochondrial membrane also contains a large number of metabolite carriers, but their association with preprotein translocases has been controversial. We performed a comprehensive analysis of the TIM23 interactome based on stable isotope labeling with amino acids in cell culture. Subsequent biochemical studies on identified partner proteins showed that the mitochondrial ADP/ATP carrier associates with the membrane-embedded core of the TIM23 complex in a stoichiometric manner, revealing an unexpected connection of mitochondrial protein biogenesis to metabolite transport. Our data indicate that direct TIM23-AAC coupling may support preprotein import into mitochondria when respiratory activity is low.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Complexos Multiproteicos/genética , Transporte Proteico/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Nature ; 451(7180): 835-40, 2008 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-18273019

RESUMO

Cell-autonomous immunity is widespread in plant-fungus interactions and terminates fungal pathogenesis either at the cell surface or after pathogen entry. Although post-invasive resistance responses typically coincide with a self-contained cell death of plant cells undergoing attack by parasites, these cells survive pre-invasive defence. Mutational analysis in Arabidopsis identified PEN1 syntaxin as one component of two pre-invasive resistance pathways against ascomycete powdery mildew fungi. Here we show that plasma-membrane-resident PEN1 promiscuously forms SDS-resistant soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) complexes together with the SNAP33 adaptor and a subset of vesicle-associated membrane proteins (VAMPs). PEN1-dependent disease resistance acts in vivo mainly through two functionally redundant VAMP72 subfamily members, VAMP721 and VAMP722. Unexpectedly, the same two VAMP proteins also operate redundantly in a default secretory pathway, suggesting dual functions in separate biological processes owing to evolutionary co-option of the default pathway for plant immunity. The disease resistance function of the secretory PEN1-SNAP33-VAMP721/722 complex and the pathogen-induced subcellular dynamics of its components are mechanistically reminiscent of immunological synapse formation in vertebrates, enabling execution of immune responses through focal secretion.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ascomicetos/fisiologia , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo
10.
Cell Rep ; 43(3): 113772, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38393949

RESUMO

The mitochondrial inner membrane plays central roles in bioenergetics and metabolism and contains several established membrane protein complexes. Here, we report the identification of a mega-complex of the inner membrane, termed mitochondrial multifunctional assembly (MIMAS). Its large size of 3 MDa explains why MIMAS has escaped detection in the analysis of mitochondria so far. MIMAS combines proteins of diverse functions from respiratory chain assembly to metabolite transport, dehydrogenases, and lipid biosynthesis but not the large established supercomplexes of the respiratory chain, ATP synthase, or prohibitin scaffold. MIMAS integrity depends on the non-bilayer phospholipid phosphatidylethanolamine, in contrast to respiratory supercomplexes whose stability depends on cardiolipin. Our findings suggest that MIMAS forms a protein-lipid mega-assembly in the mitochondrial inner membrane that integrates respiratory biogenesis and metabolic processes in a multifunctional platform.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Fosfolipídeos/metabolismo , Transporte de Elétrons , Cardiolipinas/metabolismo
11.
Cell Rep ; 38(4): 110290, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35081352

RESUMO

Invaginations of the mitochondrial inner membrane, termed cristae, are hubs for oxidative phosphorylation. The mitochondrial contact site and cristae organizing system (MICOS) and the dimeric F1Fo-ATP synthase play important roles in controlling cristae architecture. A fraction of the MICOS core subunit Mic10 is found in association with the ATP synthase, yet it is unknown whether this interaction is of relevance for mitochondrial or cellular functions. Here, we established conditions to selectively study the role of Mic10 at the ATP synthase. Mic10 variants impaired in MICOS functions stimulate ATP synthase oligomerization like wild-type Mic10 and promote efficient inner membrane energization, adaptation to non-fermentable carbon sources, and respiratory growth. Mic10's functions in respiratory growth largely depend on Mic10ATPsynthase, not on Mic10MICOS. We conclude that Mic10 plays a dual role as core subunit of MICOS and as partner of the F1Fo-ATP synthase, serving distinct functions in cristae shaping and respiratory adaptation and growth.


Assuntos
Adaptação Fisiológica/fisiologia , Adenosina Trifosfatases/metabolismo , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
J Biol Chem ; 285(16): 12445-53, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20177057

RESUMO

Grp170 and Hsp110 proteins constitute two evolutionary distinct branches of the Hsp70 family that share the ability to function as nucleotide exchange factors (NEFs) for canonical Hsp70s. Although the NEF mechanism of the cytoplasmic Hsp110s is well understood, little is known regarding the mechanism used by Grp170s in the endoplasmic reticulum. In this study, we compare the yeast Grp170 Lhs1 with the yeast Hsp110 Sse1. We find that residues important for Sse1 NEF activity are conserved in Lhs1 and that mutations in these residues in Lhs1 compromise NEF activity. As previously reported for Sse1, Lhs1 requires ATP to trigger nucleotide exchange in its cognate Hsp70 partner Kar2. Using site-specific cross-linking, we show that the nucleotide-binding domain (NBD) of Lhs1 interacts with the NBD of Kar2 face to face, and that Lhs1 contacts the side of the Kar2 NBD via its protruding C-terminal alpha-helical domain. To directly address the mechanism of nucleotide exchange, we have compared the hydrogen-exchange characteristics of a yeast Hsp70 NBD (Ssa1) in complex with either Sse1 or Lhs1. We find that Lhs1 and Sse1 induce very similar changes in the conformational dynamics in the Hsp70. Thus, our findings demonstrate that despite some differences between Hsp110 and Grp170 proteins, they use a similar mechanism to trigger nucleotide exchange.


Assuntos
Glicoproteínas/metabolismo , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação/genética , Reagentes de Ligações Cruzadas , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicoproteínas/química , Glicoproteínas/genética , Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Complexos Multiproteicos , Mutagênese Sítio-Dirigida , Conformação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
13.
Proc Natl Acad Sci U S A ; 105(43): 16519-24, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-18948593

RESUMO

Hsp110 proteins are relatives of canonical Hsp70 chaperones and are expressed abundantly in the eukaryotic cytosol. Recently, it has become clear that Hsp110 proteins are essential nucleotide exchange factors (NEFs) for Hsp70 chaperones. Here, we report the architecture of the complex between the yeast Hsp110, Sse1, and its cognate Hsp70 partner, Ssa1, as revealed by hydrogen-deuterium exchange analysis and site-specific cross-linking. The two nucleotide-binding domains (NBDs) of Sse1 and Ssa1 are positioned to face each other and form extensive contacts between opposite lobes of their NBDs. A second contact with the periphery of the Ssa1 NBD lobe II is likely mediated via the protruding C-terminal alpha-helical subdomain of Sse1. To address the mechanism of catalyzed nucleotide exchange, we have compared the hydrogen exchange characteristics of the Ssa1 NBD in complex with either Sse1 or the yeast homologs of the NEFs HspBP1 and Bag-1. We find that Sse1 exploits a Bag-1-like mechanism to catalyze nucleotide release, which involves opening of the Ssa1 NBD by tilting lobe II. Thus, Hsp110 proteins use a unique binding mode to catalyze nucleotide release from Hsp70s by a functionally convergent mechanism.


Assuntos
Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Proteínas de Ligação a DNA , Medição da Troca de Deutério , Proteínas de Choque Térmico , Proteínas de Membrana Transportadoras , Proteínas de Transporte da Membrana Mitocondrial , Chaperonas Moleculares , Nucleotídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição
14.
Biomolecules ; 10(7)2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645990

RESUMO

: Metabolite carriers of the mitochondrial inner membrane are crucial for cellular physiology since mitochondria contribute essential metabolic reactions and synthesize the majority of the cellular ATP. Like almost all mitochondrial proteins, carriers have to be imported into mitochondria from the cytosol. Carrier precursors utilize a specialized translocation pathway dedicated to the biogenesis of carriers and related proteins, the carrier translocase of the inner membrane (TIM22) pathway. After recognition and import through the mitochondrial outer membrane via the translocase of the outer membrane (TOM) complex, carrier precursors are ushered through the intermembrane space by hexameric TIM chaperones and ultimately integrated into the inner membrane by the TIM22 carrier translocase. Recent advances have shed light on the mechanisms of TOM translocase and TIM chaperone function, uncovered an unexpected versatility of the machineries, and revealed novel components and functional crosstalk of the human TIM22 translocase.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/química , Proteínas Mitocondriais/metabolismo , Transporte Biológico , Humanos , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Transdução de Sinais
15.
Methods Mol Biol ; 1709: 179-188, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29177659

RESUMO

The ATPase cycle of Hsp70 chaperones controls their transient association with substrates and thus governs their function in protein folding. Nucleotide exchange factors (NEFs) accelerate ADP release from Hsp70, which results in rebinding of ATP and release of the substrate, thereby regulating the lifetime of the Hsp70-substrate complex. This chapter describes several methods suitable to study NEFs of Hsp70 chaperones. On the one hand, steady-state ATPase assays provide information on how the NEF influences progression of the Hsp70 through the entire ATPase cycle. On the other hand, nucleotide release can be measured directly using labeled nucleotides, which enables identification and further characterization of NEFs.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Biologia Molecular/métodos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos
16.
J Mol Biol ; 430(13): 1883-1890, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29733859

RESUMO

The multi-subunit mitochondrial contact site and cristae organizing system (MICOS) is a conserved protein complex of the inner mitochondrial membrane that is essential for maintenance of cristae architecture. The core subunit Mic10 forms large oligomers that build a scaffold and induce membrane curvature. The regulation of Mic10 oligomerization is poorly understood. We report that Mic26 exerts a destabilizing effect on Mic10 oligomers and thus functions in an antagonistic manner to the stabilizing subunit Mic27. The mitochondrial signature phospholipid cardiolipin shows a stabilizing function on Mic10 oligomers. Our findings indicate that the Mic10 core machinery of MICOS is regulated by several mechanisms, including interaction with cardiolipin and antagonistic actions of Mic26 and Mic27.


Assuntos
Cardiolipinas/farmacologia , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana/química , Proteínas Mitocondriais/química , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/química
17.
Microb Cell ; 4(8): 236-239, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28845421

RESUMO

Oxidative phosphorylation takes place at specialized compartments of the inner mitochondrial membrane, the cristae. The elaborate ultrastructure of cristae membranes enables efficient chemi-osmotic coupling of respiratory chain and F1Fo-ATP synthase. Dynamic membrane remodeling allows mitochondria to adapt to changing physiological requirements. The mitochondrial contact site and cristae organizing system (MICOS) and the oligomeric ATP synthase have been known to govern distinct features of cristae architecture. A new study 1 on the crosstalk between these two machineries now sheds light on the mechanisms of cristae formation and maintenance.

18.
J Mol Biol ; 429(14): 2148-2160, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28576471

RESUMO

Mitochondrial biogenesis and function depend on the intensive exchange of molecules with other cellular compartments. The mitochondrial outer membrane plays a central role in this communication process. It is equipped with a number of specific protein machineries that enable the transport of proteins and metabolites. Furthermore, the outer membrane forms molecular contact sites with other cell organelles like the endoplasmic reticulum (ER), thus integrating mitochondrial function in cellular physiology. The best-studied mitochondrial organelle contact site, the ER-mitochondria encounter structure (ERMES) has been linked to many vital processes including mitochondrial division, inheritance, mitophagy, and phospholipid transport. Strikingly, ER-mitochondria contact sites are closely connected to outer membrane protein translocases. The translocase of the outer mitochondrial membrane (TOM) represents the general mitochondrial entry gate for precursor proteins that are synthesized on cytosolic ribosomes. The outer membrane also harbors the sorting and assembly machinery (SAM) that mediates membrane insertion of ß-barrel proteins. Both of these essential protein translocases are functionally linked to ER-mitochondria contact sites. First, the SAM complex associates with an ERMES core component to promote assembly of the TOM complex. Second, several TOM components have been co-opted as ER-mitochondria tethers. We propose that protein import and organelle contact sites are linked to coordinate processes important for mitochondrial biogenesis.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Transporte Proteico , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial
19.
J Mol Biol ; 429(8): 1162-1170, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28315355

RESUMO

The mitochondrial contact site and cristae organizing system (MICOS) is crucial for maintaining the architecture of the mitochondrial inner membrane. MICOS is enriched at crista junctions that connect the two inner membrane domains: inner boundary membrane and cristae membrane. MICOS promotes the formation of crista junctions, whereas the oligomeric F1Fo-ATP synthase is crucial for shaping cristae rims, indicating antagonistic functions of these machineries in organizing inner membrane architecture. We report that the MICOS core subunit Mic10, but not Mic60, binds to the F1Fo-ATP synthase. Mic10 selectively associates with the dimeric form of the ATP synthase and supports the formation of ATP synthase oligomers. Our results suggest that Mic10 plays a dual role in mitochondrial inner membrane architecture. In addition to its central function in sculpting crista junctions, a fraction of Mic10 molecules interact with the cristae rim-forming F1Fo-ATP synthase.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Multimerização Proteica , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/genética
20.
Nat Commun ; 8: 15258, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561061

RESUMO

The mitochondrial contact site and cristae organizing system (MICOS) is crucial for the formation of crista junctions and mitochondrial inner membrane architecture. MICOS contains two core components. Mic10 shows membrane-bending activity, whereas Mic60 (mitofilin) forms contact sites between inner and outer membranes. Here we report that Mic60 deforms liposomes into thin membrane tubules and thus displays membrane-shaping activity. We identify a membrane-binding site in the soluble intermembrane space-exposed part of Mic60. This membrane-binding site is formed by a predicted amphipathic helix between the conserved coiled-coil and mitofilin domains. The mitofilin domain negatively regulates the membrane-shaping activity of Mic60. Binding of Mic19 to the mitofilin domain modulates this activity. Membrane binding and shaping by the conserved Mic60-Mic19 complex is crucial for crista junction formation, mitochondrial membrane architecture and efficient respiratory activity. Mic60 thus plays a dual role by shaping inner membrane crista junctions and forming contact sites with the outer membrane.


Assuntos
Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Membrana Celular/metabolismo , Lipossomos , Proteínas Mitocondriais/química , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA