Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 617(7961): 493-498, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36889355

RESUMO

Photocathodes-materials that convert photons into electrons through a phenomenon known as the photoelectric effect-are important for many modern technologies that rely on light detection or electron-beam generation1-3. However, current photocathodes are based on conventional metals and semiconductors that were mostly discovered six decades ago with sound theoretical underpinnings4,5. Progress in this field has been limited to refinements in photocathode performance based on sophisticated materials engineering1,6. Here we report unusual photoemission properties of the reconstructed surface of single crystals of the perovskite oxide SrTiO3(100), which were prepared by simple vacuum annealing. These properties are different from the existing theoretical descriptions4,7-10. In contrast to other photocathodes with a positive electron affinity, our SrTiO3 surface produces, at room temperature, discrete secondary photoemission spectra, which are characteristic of efficient photocathode materials with a negative electron affinity11,12. At low temperatures, the photoemission peak intensity is enhanced substantially and the electron beam obtained from non-threshold excitations shows longitudinal and transverse coherence that differs from previous results by at least an order of magnitude6,13,14. The observed emergence of coherence in secondary photoemission points to the development of a previously undescribed underlying process in addition to those of the current theoretical photoemission framework. SrTiO3 is an example of a fundamentally new class of photocathode quantum materials that could be used for applications that require intense coherent electron beams, without the need for monochromatic excitations.

2.
Opt Express ; 27(14): 19177-19187, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31503681

RESUMO

We investigate experimentally spatiotemporal characteristics of fluorescence emission from fs-laser-induced filaments in air. Emissions accompanying the transitions of N2 (C3Πu-B3Πg) and N 2+ (B2Σu+-X2Σg+) are dominant. The decay dynamics of fluorescence from different radial positions and longitudinal sections of a filament column are obtained along with high resolution spectra. A decay curve contains two exponential components: a fast one (with a decay time constant ∼10s ps), and a slow one (∼sub-ns). The lifetime of the N 2 fluorescence is about three orders shorter than its spontaneous emission lifetime, indicating that most of the N 2 molecules in the excited state (C3Πu) are de-excited through collision. Different de-excitation mechanisms of N 2 (C3Πu) molecules contributing to fluorescence decay constants, e.g., the e --N2, N 2-N2, and O 2-N2 collisions, are elucidated. We analyze the variations of decay constants together with corresponding fluorescence intensities, and obtain temperature distributions by fitting band spectra of N 2 molecules and N 2+ ions with a synthetic spectral model. Our results suggest that the fast and slow decay processes originate from the e --N2 and O 2-N2 collisions, respectively.

3.
Opt Express ; 26(10): 13425-13435, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801368

RESUMO

We report the influence of femtosecond (fs) laser weakly ionized air channel on characteristics of plasma induced from fs-laser ablation of solid Zr metal target. A novel method to create high temperature, low electron density plasma with intense elemental emission and weak bremsstrahlung emission was demonstrated. Weakly ionized air channel was generated as a result of a non-linear phenomenon. Two-dimensional time-resolved optical-emission images of plasma plumes were taken for plume dynamics analysis. Dynamic physical properties of filament channels were simulated. In particular, we investigated the influence of weakly ionized air channel on the evolution of solid plasma plume. Plasma plume splitting was observed whilst longer weakly ionized air channel formed above the ablation spot. The domination mechanism for splitting is attributed to the long-lived underdense channel created by fs-laser induced weakly ionization of air. The evolutions of atomic/molecular emission intensity, peak broadening, and plasma temperature were analyzed, and the results show that the part of plasma entering weakly ionized air channel features higher initial temperature, lower electron density and faster decay.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA