Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 17(3): e1008887, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33735180

RESUMO

The winged insects of the order Diptera are colloquially named for their most recognizable phenotype: flight. These insects rely on flight for a number of important life history traits, such as dispersal, foraging, and courtship. Despite the importance of flight, relatively little is known about the genetic architecture of flight performance. Accordingly, we sought to uncover the genetic modifiers of flight using a measure of flies' reaction and response to an abrupt drop in a vertical flight column. We conducted a genome wide association study (GWAS) using 197 of the Drosophila Genetic Reference Panel (DGRP) lines, and identified a combination of additive and marginal variants, epistatic interactions, whole genes, and enrichment across interaction networks. Egfr, a highly pleiotropic developmental gene, was among the most significant additive variants identified. We functionally validated 13 of the additive candidate genes' (Adgf-A/Adgf-A2/CG32181, bru1, CadN, flapper (CG11073), CG15236, flippy (CG9766), CREG, Dscam4, form3, fry, Lasp/CG9692, Pde6, Snoo), and introduce a novel approach to whole gene significance screens: PEGASUS_flies. Additionally, we identified ppk23, an Acid Sensing Ion Channel (ASIC) homolog, as an important hub for epistatic interactions. We propose a model that suggests genetic modifiers of wing and muscle morphology, nervous system development and function, BMP signaling, sexually dimorphic neural wiring, and gene regulation are all important for the observed differences flight performance in a natural population. Additionally, these results represent a snapshot of the genetic modifiers affecting drop-response flight performance in Drosophila, with implications for other insects.


Assuntos
Drosophila melanogaster/genética , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Neurogênese/genética , Animais , Drosophila/embriologia , Drosophila melanogaster/metabolismo , Epigênese Genética , Feminino , Voo Animal , Estudos de Associação Genética , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único
2.
Physiol Genomics ; 55(6): 259-274, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37184227

RESUMO

Cigarette smoking increases the risk of acute respiratory distress syndrome (ARDS; Calfee CS, Matthay MA, Eisner MD, Benowitz N, Call M, Pittet J-F, Cohen MJ. Am J Respir Crit Care Med 183: 1660-1665, 2011; Calfee CS, Matthay MA, Kangelaris KN, Siew ED, Janz DR, Bernard GR, May AK, Jacob P, Havel C, Benowitz NL, Ware LB. Crit Care Med 43: 1790-1797, 2015; Toy P, Gajic O, Bacchetti P, Looney MR, Gropper MA, Hubmayr R, Lowell CA, Norris PJ, Murphy EL, Weiskopf RB, Wilson G, Koenigsberg M, Lee D, Schuller R, Wu P, Grimes B, Gandhi MJ, Winters JL, Mair D, Hirschler N, Sanchez Rosen R, Matthay MA, TRALI Study Group. Blood 119: 1757-1767, 2012) and causes emphysema. However, it is not known why some individuals develop disease, whereas others do not. We found that smoke-exposed AKR mice were more susceptible to lipopolysaccharides (LPS)-induced acute lung injury (ALI) than C57BL/6 mice (Sakhatskyy P, Wang Z, Borgas D, Lomas-Neira J, Chen Y, Ayala A, Rounds S, Lu Q. Am J Physiol Lung Cell Mol Physiol 312: L56-L67, 2017); thus, we investigated strain-dependent lung transcriptomic responses to cigarette smoke (CS). Eight-week-old male AKR and C57BL/6 mice were exposed to 3 wk of room air (RA) or cigarette smoke (CS) for 6 h/day, 4 days/wk, followed by intratracheal instillation of LPS or normal saline (NS) and microarray analysis of lung homogenate gene expression. Other groups of AKR and C57 mice were exposed to RA or CS for 6 wk, followed by evaluation of static lung compliance and tissue elastance, morphometric evaluation for emphysema, or microarray analysis of lung gene expression. Transcriptomic analyses of lung homogenates show distinct strain-dependent lung transcriptional responses to CS and LPS, with AKR mice having larger numbers of genes affected than similarly treated C57 mice, congruent with strain differences in physiologic and inflammatory parameters previously observed in LPS-induced ALI after CS priming. These results suggest that genetic differences may underlie differing susceptibility of smokers to ARDS and emphysema. Strain-based differences in gene transcription contribute to CS and LPS-induced lung injury. There may be a genetic basis for smoking-related lung injury. Clinicians should consider cigarette smoke exposure as a risk factor for ALI and ARDS.NEW & NOTEWORTHY We demonstrate that transcriptomes expressed in lung homogenates also differ between the mouse strains and after acute (3 wk) exposure of animals to cigarette smoke (CS) and/or to lipopolysaccharide. Mouse strains also differed in physiologic, pathologic, and transcriptomic, responses to more prolonged (6 wk) exposure to CS. These data support a genetic basis for enhanced susceptibility to acute and chronic lung injury among humans who smoke cigarettes.


Assuntos
Lesão Pulmonar Aguda , Fumar Cigarros , Enfisema , Síndrome do Desconforto Respiratório , Humanos , Masculino , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Transcriptoma , Camundongos Endogâmicos AKR , Camundongos Endogâmicos C57BL , Pulmão/patologia , Lesão Pulmonar Aguda/patologia , Síndrome do Desconforto Respiratório/genética , Enfisema/metabolismo , Enfisema/patologia , Modelos Animais de Doenças
3.
Mol Ecol ; 32(18): 5028-5041, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37540037

RESUMO

Manipulation of host phenotypes by parasites is hypothesized to be an adaptive strategy enhancing parasite transmission across hosts and generations. Characterizing the molecular mechanisms of manipulation is important to advance our understanding of host-parasite coevolution. The trematode (Levinseniella byrdi) is known to alter the colour and behaviour of its amphipod host (Orchestia grillus) presumably increasing predation of amphipods which enhances trematode transmission through its life cycle. We sampled 24 infected and 24 uninfected amphipods from a salt marsh in Massachusetts to perform differential gene expression analysis. In addition, we constructed novel genomic tools for O. grillus including a de novo genome and transcriptome. We discovered that trematode infection results in upregulation of amphipod transcripts associated with pigmentation and detection of external stimuli, and downregulation of multiple amphipod transcripts implicated in invertebrate immune responses, such as vacuolar ATPase genes. We hypothesize that suppression of immune genes and the altered expression of genes associated with coloration and behaviour may allow the trematode to persist in the amphipod and engage in further biochemical manipulation that promotes transmission. The genomic tools and transcriptomic analyses reported provide new opportunities to discover how parasites alter diverse pathways underlying host phenotypic changes in natural populations.


Assuntos
Anfípodes , Parasitos , Trematódeos , Animais , Anfípodes/genética , Interações Hospedeiro-Parasita/genética , Trematódeos/genética , Fenótipo
4.
Proc Natl Acad Sci U S A ; 117(10): 5376-5385, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32098846

RESUMO

The mannose-6-phosphate isomerase (Mpi) locus in Semibalanus balanoides has been studied as a candidate gene for balancing selection for more than two decades. Previous work has shown that Mpi allozyme genotypes (fast and slow) have different frequencies across Atlantic intertidal zones due to selection on postsettlement survival (i.e., allele zonation). We present the complete gene sequence of the Mpi locus and quantify nucleotide polymorphism in S. balanoides, as well as divergence to its sister taxon Semibalanus cariosus We show that the slow allozyme contains a derived charge-altering amino acid polymorphism, and both allozyme classes correspond to two haplogroups with multiple internal haplotypes. The locus shows several footprints of balancing selection around the fast/slow site: an enrichment of positive Tajima's D for nonsynonymous mutations, an excess of polymorphism, and a spike in the levels of silent polymorphism relative to silent divergence, as well as a site frequency spectrum enriched for midfrequency mutations. We observe other departures from neutrality across the locus in both coding and noncoding regions. These include a nonsynonymous trans-species polymorphism and a recent mutation under selection within the fast haplogroup. The latter suggests ongoing allelic replacement of functionally relevant amino acid variants. Moreover, predicted models of Mpi protein structure provide insight into the functional significance of the putatively selected amino acid polymorphisms. While footprints of selection are widespread across the range of S. balanoides, our data show that intertidal zonation patterns are variable across both spatial and temporal scales. These data provide further evidence for heterogeneous selection on Mpi.


Assuntos
Manose-6-Fosfato Isomerase/genética , Seleção Genética , Thoracica/enzimologia , Thoracica/genética , Alelos , Animais , Loci Gênicos , Genótipo , Isoenzimas/química , Isoenzimas/genética , Manose-6-Fosfato Isomerase/química , Mutação , Polimorfismo Genético
5.
Mol Biol Evol ; 38(2): 676-685, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32898261

RESUMO

Acorn barnacle adults experience environmental heterogeneity at various spatial scales of their circumboreal habitat, raising the question of how adaptation to high environmental variability is maintained in the face of strong juvenile dispersal and mortality. Here, we show that 4% of genes in the barnacle genome experience balancing selection across the entire range of the species. Many of these genes harbor mutations maintained across 2 My of evolution between the Pacific and Atlantic oceans. These genes are involved in ion regulation, pain reception, and heat tolerance, functions which are essential in highly variable ecosystems. The data also reveal complex population structure within and between basins, driven by the trans-Arctic interchange and the last glaciation. Divergence between Atlantic and Pacific populations is high, foreshadowing the onset of allopatric speciation, and suggesting that balancing selection is strong enough to maintain functional variation for millions of years in the face of complex demography.


Assuntos
Interação Gene-Ambiente , Seleção Genética , Thoracica/genética , Animais , Europa (Continente) , América do Norte , Filogeografia
6.
J Hered ; 113(1): 37-47, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34964900

RESUMO

Mitochondria evolved from a union of microbial cells belonging to distinct lineages that were likely anaerobic. The evolution of eukaryotes required a massive reorganization of the 2 genomes and eventual adaptation to aerobic environments. The nutrients and oxygen that sustain eukaryotic metabolism today are processed in mitochondria through coordinated expression of 37 mitochondrial genes and over 1000 nuclear genes. This puts mitochondria at the nexus of gene-by-gene (G×G) and gene-by-environment (G×E) interactions that sustain life. Here we use a Drosophila model of mitonuclear genetic interactions to explore the notion that mitochondria are environments for the nuclear genome, and vice versa. We construct factorial combinations of mtDNA and nuclear chromosomes to test for epistatic interactions (G×G), and expose these mitonuclear genotypes to altered dietary environments to examine G×E interactions. We use development time and genome-wide RNAseq analyses to assess the relative contributions of mtDNA, nuclear chromosomes, and environmental effects on these traits (mitonuclear G×G×E). We show that the nuclear transcriptional response to alternative mitochondrial "environments" (G×G) has significant overlap with the transcriptional response of mitonuclear genotypes to altered dietary environments. These analyses point to specific transcription factors (e.g., giant) that mediated these interactions, and identified coexpressed modules of genes that may account for the overlap in differentially expressed genes. Roughly 20% of the transcriptome includes G×G genes that are concordant with G×E genes, suggesting that mitonuclear interactions are part of an organism's environment.


Assuntos
Drosophila , Genoma Mitocondrial , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Drosophila/genética , Epistasia Genética , Mitocôndrias/genética
7.
BMC Genomics ; 22(1): 213, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33761878

RESUMO

BACKGROUND: In addition to their well characterized role in cellular energy production, new evidence has revealed the involvement of mitochondria in diverse signaling pathways that regulate a broad array of cellular functions. The mitochondrial genome (mtDNA) encodes essential components of the oxidative phosphorylation (OXPHOS) pathway whose expression must be coordinated with the components transcribed from the nuclear genome. Mitochondrial dysfunction is associated with disorders including cancer and neurodegenerative diseases, yet the role of the complex interactions between the mitochondrial and nuclear genomes are poorly understood. RESULTS: Using a Drosophila model in which alternative mtDNAs are present on a common nuclear background, we studied the effects of this altered mitonuclear communication on the transcriptomic response to altered nutrient status. Adult flies with the 'native' and 'disrupted' genotypes were re-fed following brief starvation, with or without exposure to rapamycin, the cognate inhibitor of the nutrient-sensing target of rapamycin (TOR). RNAseq showed that alternative mtDNA genotypes affect the temporal transcriptional response to nutrients in a rapamycin-dependent manner. Pathways most greatly affected were OXPHOS, protein metabolism and fatty acid metabolism. A distinct set of testis-specific genes was also differentially regulated in the experiment. CONCLUSIONS: Many of the differentially expressed genes between alternative mitonuclear genotypes have no direct interaction with mtDNA gene products, suggesting that the mtDNA genotype contributes to retrograde signaling from mitochondria to the nucleus. The interaction of mitochondrial genotype (mtDNA) with rapamycin treatment identifies new links between mitochondria and the nutrient-sensing mTORC1 (mechanistic target of rapamycin complex 1) signaling pathway.


Assuntos
Drosophila , Sirolimo , Animais , DNA Mitocondrial/genética , Drosophila/genética , Genótipo , Masculino , Mitocôndrias/genética , Nutrientes , Sirolimo/farmacologia
8.
Mol Ecol ; 30(23): 6417-6433, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33960035

RESUMO

The northern acorn barnacle (Semibalanus balanoides) is a robust system to study the genetic basis of adaptations to highly heterogeneous environments. Adult barnacles may be exposed to highly dissimilar levels of thermal stress depending on where they settle in the intertidal (i.e., closer to the upper or lower tidal boundary). For instance, barnacles near the upper tidal limit experience episodic summer temperatures above recorded heat coma levels. This differential stress at the microhabitat level is also dependent on the aspect of sun exposure. In the present study, we used pool-seq approaches to conduct a genome wide screen for loci responding to intertidal zonation across the North Atlantic basin (Maine, Rhode Island, and Norway). Our analysis discovered 382 genomic regions containing SNPs which are consistently zonated (i.e., SNPs whose frequencies vary depending on their position in the rocky intertidal) across all surveyed habitats. Notably, most zonated SNPs are young and private to the North Atlantic. These regions show high levels of genetic differentiation across ecologically extreme microhabitats concomitant with elevated levels of genetic variation and Tajima's D, suggesting the action of non-neutral processes. Overall, these findings support the hypothesis that spatially heterogeneous selection is a general and repeatable feature for this species, and that natural selection can maintain functional genetic variation in heterogeneous environments.


Assuntos
Thoracica , Adaptação Fisiológica/genética , Animais , Genômica , Nucleotídeos , Seleção Genética , Thoracica/genética
9.
J Exp Biol ; 224(Pt 2)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33188065

RESUMO

Negative geotaxis (climbing) performance is a useful metric for quantifying Drosophila health. Manual methods to quantify climbing performance are tedious and often biased, while many available computational methods have challenging hardware or software requirements. We present an alternative: FreeClimber. This open source, Python-based platform subtracts a video's static background to improve detection for flies moving across heterogeneous backgrounds. FreeClimber calculates a cohort's velocity as the slope of the most linear portion of a mean vertical position versus time curve. It can run from a graphical user interface for optimization or a command line interface for high-throughput and automated batch processing, improving accessibility for users with different expertise. FreeClimber outputs calculated slopes, spot locations for follow-up analyses (e.g. tracking), and several visualizations and plots. We demonstrate FreeClimber's utility in a longitudinal study for endurance exercise performance in Drosophila mitonuclear genotypes using six distinct mitochondrial haplotypes paired with a common D. melanogaster nuclear background.


Assuntos
Comportamento Animal , Drosophila melanogaster , Software , Animais , Drosophila melanogaster/genética
10.
BMC Genomics ; 20(1): 691, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477008

RESUMO

BACKGROUND: Mitochondria perform many key roles in their eukaryotic hosts, from integrating signaling pathways through to modulating whole organism phenotypes. The > 1 billion years of nuclear and mitochondrial gene co-evolution has necessitated coordinated expression of gene products from both genomes that maintain mitochondrial, and more generally, eukaryotic cellular function. How mitochondrial DNA (mtDNA) variation modifies host fitness has proved a challenging question but has profound implications for evolutionary and medical genetics. In Drosophila, we have previously shown that recently diverged mtDNA haplotypes within-species can have more impact on organismal phenotypes than older, deeply diverged haplotypes from different species. Here, we tested the effects of mtDNA haplotype variation on gene expression in Drosophila under standardized conditions. Using the Drosophila Genetic Reference Panel (DGRP), we constructed a panel of mitonuclear genotypes that consists of factorial variation in nuclear and mtDNA genomes, with mtDNAs originating in D. melanogaster (2x haplotypes) and D. simulans (2x haplotypes). RESULTS: We show that mtDNA haplotype variation unequivocally alters nuclear gene expression in both females and males, and mitonuclear interactions are pervasive modifying factors for gene expression. There was appreciable overlap between the sexes for mtDNA-sensitive genes, and considerable transcriptional variation attributed to particular mtDNA contrasts. These genes are generally found in low-connectivity gene co-expression networks, occur in gene clusters along chromosomes, are often flanked by non-coding RNA, and are under-represented among housekeeping genes. Finally, we identify the giant (gt) transcription factor motif as a putative regulatory sequence associated with mtDNA-sensitive genes. CONCLUSIONS: There are predictive conditions for nuclear genes that are influenced by mtDNA variation.


Assuntos
Núcleo Celular/genética , Drosophila/genética , Redes Reguladoras de Genes/genética , Genoma Mitocondrial/genética , Motivos de Aminoácidos/genética , Animais , Núcleo Celular/metabolismo , Drosophila/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes/fisiologia , Genes Essenciais/genética , Genes Essenciais/fisiologia , Variação Genética , Genótipo , Haplótipos , Masculino , Família Multigênica , Fenótipo , Mapas de Interação de Proteínas/genética , Mapas de Interação de Proteínas/fisiologia , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA-Seq , Transcriptoma
11.
J Hered ; 110(3): 300-309, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30753690

RESUMO

Trans-generational maternal effects have been shown to influence a broad range of offspring phenotypes. However, very little is known about paternal trans-generational effects. Here, we tested the trans-generational effects of maternal and paternal age, and their interaction, on daughter and son reproductive fitness in Drosophila melanogaster. We found significant effects of parent ages on offspring reproductive fitness during a 10 day postfertilization period. In daughters, older (45 days old) mothers conferred lower reproductive fitness compared with younger mothers (3 days old). In sons, father's age significantly affected reproductive fitness. The effects of 2 old parents were additive in both sexes and reproductive fitness was lowest when the focal individual had 2 old parents. Interestingly, daughter fertility was sensitive to father's age but son fertility was insensitive to mother's age, suggesting a sexual asymmetry in trans-generational effects. We found the egg-laying dynamics in daughters dramatically shaped this relationship. Daughters with 2 old parents demonstrated an extreme egg dumping behavior on day 1 and laid >2.35× the number of eggs than the other 3 age class treatments. Our study reveals significant trans-generational maternal and paternal age effects on fertility and an association with a novel egg laying behavioral phenotype in Drosophila.


Assuntos
Drosophila melanogaster/genética , Fertilidade/genética , Reprodução/genética , Comportamento Sexual Animal , Criação de Animais Domésticos , Animais , Feminino , Aptidão Genética , Variação Genética , Masculino , Modelos Genéticos , Fenótipo
12.
Mol Biol Evol ; 34(2): 447-466, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28110272

RESUMO

Among the major challenges in quantitative genetics and personalized medicine is to understand how gene × gene interactions (G × G: epistasis) and gene × environment interactions (G × E) underlie phenotypic variation. Here, we use the intimate relationship between mitochondria and oxygen availability to dissect the roles of nuclear DNA (nDNA) variation, mitochondrial DNA (mtDNA) variation, hypoxia, and their interactions on gene expression in Drosophila melanogaster. Mitochondria provide an important evolutionary and medical context for understanding G × G and G × E given their central role in integrating cellular signals. We hypothesized that hypoxia would alter mitonuclear communication and gene expression patterns. We show that first order nDNA, mtDNA, and hypoxia effects vary between the sexes, along with mitonuclear epistasis and G × G × E effects. Females were generally more sensitive to genetic and environmental perturbation. While dozens to hundreds of genes are altered by hypoxia in individual genotypes, we found very little overlap among mitonuclear genotypes for genes that were significantly differentially expressed as a consequence of hypoxia; excluding the gene hairy. Oxidative phosphorylation genes were among the most influenced by hypoxia and mtDNA, and exposure to hypoxia increased the signature of mtDNA effects, suggesting retrograde signaling between mtDNA and nDNA. We identified nDNA-encoded genes in the electron transport chain (succinate dehydrogenase) that exhibit female-specific mtDNA effects. Our findings have important implications for personalized medicine, the sex-specific nature of mitonuclear communication, and gene × gene coevolution under variable or changing environments.


Assuntos
DNA Mitocondrial/genética , Drosophila melanogaster/genética , Hipóxia/genética , Animais , Evolução Biológica , Núcleo Celular/genética , Drosophila melanogaster/metabolismo , Epistasia Genética , Feminino , Regulação da Expressão Gênica , Genótipo , Haplótipos , Hipóxia/metabolismo , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Polimorfismo Genético , Ativação Transcricional , Transcriptoma
13.
IUBMB Life ; 70(12): 1275-1288, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30394643

RESUMO

Mitochondrial function requires the coordinated expression of dozens of gene products from the mitochondrial genome and hundreds from the nuclear genomes. The systems that emerge from these interactions convert the food we eat and the oxygen we breathe into energy for life, while regulating a wide range of other cellular processes. These facts beg the question of whether the gene-by-gene interactions (G x G) that enable mitochondrial function are distinct from the gene-by-environment interactions (G x E) that fuel mitochondrial activity. We examine this question using a Drosophila model of mitonuclear interactions in which experimental combinations of mtDNA and nuclear chromosomes generate pairs of mitonuclear genotypes to test for epistatic interactions (G x G). These mitonuclear genotypes are then exposed to altered dietary or oxygen environments to test for G x E interactions. We use development time to assess dietary effects, and genome wide RNAseq analyses to assess hypoxic effects on transcription, which can be partitioned in to mito, nuclear, and environmental (G x G x E) contributions to these complex traits. We find that mitonuclear epistasis is universal, and that dietary and hypoxic treatments alter the epistatic interactions. We further show that the transcriptional response to alternative mitonuclear interactions has significant overlap with the transcriptional response to alternative oxygen environments. Gene coexpression analyses suggest that these shared genes are more central in networks of gene interactions, implying some functional overlap between epistasis and genotype by environment interactions. These results are discussed in the context of evolutionary fitness, the genetic basis of complex traits, and the challenge of achieving precision in personalized medicine. © 2018 The Authors. IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 70(12):1275-1288, 2018.


Assuntos
Epistasia Genética/genética , Interação Gene-Ambiente , Mitocôndrias/genética , Herança Multifatorial/genética , Animais , Núcleo Celular/genética , Drosophila melanogaster/genética , Genoma Mitocondrial/genética , Genômica , Genótipo , Haplótipos , Humanos , Fenótipo , Medicina de Precisão
14.
PLoS Genet ; 10(5): e1004354, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24832080

RESUMO

Dietary restriction (DR) is the most consistent means of extending longevity in a wide range of organisms. A growing body of literature indicates that mitochondria play an important role in longevity extension by DR, but the impact of mitochondrial genotypes on the DR process have received little attention. Mitochondrial function requires proper integration of gene products from their own genomes (mtDNA) and the nuclear genome as well as the metabolic state of the cell, which is heavily influenced by diet. These three-way mitochondrial-nuclear-dietary interactions influence cellular and organismal functions that affect fitness, aging, and disease in nature. To examine these interactions in the context of longevity, we generated 18 "mito-nuclear" genotypes by placing mtDNA from strains of Drosophila melanogaster and D. simulans onto controlled nuclear backgrounds of D. melanogaster (Oregon-R, w1118, SIR2 overexpression and control) and quantified the lifespan of each mitonuclear genotype on five different sugar:yeast diets spanning a range of caloric and dietary restriction (CR and DR). Using mixed effect models to quantify main and interaction effects, we uncovered strong mitochondrial-diet, mitochondrial-nuclear, and nuclear-diet interaction effects, in addition to three-way interactions. Survival analyses demonstrate that interaction effects can be more important than individual genetic or dietary effects on longevity. Overexpression of SIR2 reduces lifespan variation among different mitochondrial genotypes and further dampens the response of lifespan to CR but not to DR, suggesting that response to these two diets involve different underlying mechanisms. Overall the results reveal that mitochondrial-nuclear genetic interactions play important roles in modulating Drosophila lifespan and these epistatic interactions are further modified by diet. More generally, these findings illustrate that gene-by-gene and gene-by-environment interactions are not simply modifiers of key factors affecting longevity, but these interactions themselves are the very factors that underlie important variation in this trait.


Assuntos
Núcleo Celular/genética , DNA Mitocondrial/genética , Longevidade/genética , Mitocôndrias/genética , Envelhecimento/genética , Animais , Restrição Calórica , Núcleo Celular/metabolismo , Dieta , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Mitocôndrias/metabolismo , Fenótipo
15.
J Cell Sci ; 127(Pt 10): 2282-90, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24610944

RESUMO

Downregulation of the mammalian target of rapamycin (mTOR) pathway by its inhibitor rapamycin is emerging as a potential pharmacological intervention that mimics the beneficial effects of dietary restriction. Modulation of mTOR has diverse effects on mitochondrial metabolism and biogenesis, but the role of the mitochondrial genotype in mediating these effects remains unknown. Here, we use novel mitochondrial genome replacement strains in Drosophila to test the hypothesis that genes encoded in mitochondrial DNA (mtDNA) influence the mTOR pathway. We show that rapamycin increases mitochondrial respiration and succinate dehydrogenase activity, decreases H2O2 production and generates distinct shifts in the metabolite profiles of isolated mitochondria versus whole Drosophila. These effects are disabled when divergent mitochondrial genomes from D. simulans are placed into a common nuclear background, demonstrating that the benefits of rapamycin to mitochondrial metabolism depend on genes encoded in the mtDNA. Rapamycin is able to enhance mitochondrial respiration when succinate dehydrogenase activity is blocked, suggesting that the beneficial effects of rapamycin on these two processes are independent. Overall, this study provides the first evidence for a link between mitochondrial genotype and the effects of rapamycin on mitochondrial metabolic pathways.


Assuntos
DNA Mitocondrial/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Sirolimo/farmacologia , Animais , DNA Mitocondrial/metabolismo , Regulação para Baixo/efeitos dos fármacos , Feminino , Oxirredução , Serina-Treonina Quinases TOR/metabolismo
16.
Appl Environ Microbiol ; 82(9): 2862-2871, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26944843

RESUMO

UNLABELLED: Environmental nutrient enrichment from human agricultural and waste runoff could cause changes to microbial communities that allow them to capitalize on newly available resources. Currently, the response of microbial communities to nutrient enrichment remains poorly understood, and, while some studies have shown no clear changes in community composition in response to heavy nutrient loading, others targeting specific genes have demonstrated clear impacts. In this study, we compared functional metagenomic profiles from sediment samples taken along two salt marsh creeks, one of which was exposed for more than 40 years to treated sewage effluent at its head. We identified strong and consistent increases in the relative abundance of microbial genes related to each of the biochemical steps in the denitrification pathway at enriched sites. Despite fine-scale local increases in the abundance of denitrification-related genes, the overall community structures based on broadly defined functional groups and taxonomic annotations were similar and varied with other environmental factors, such as salinity, which were common to both creeks. Homology-based taxonomic assignments of nitrous oxide reductase sequences in our data show that increases are spread over a broad taxonomic range, thus limiting detection from taxonomic data alone. Together, these results illustrate a functionally targeted yet taxonomically broad response of microbial communities to anthropogenic nutrient loading, indicating some resolution to the apparently conflicting results of existing studies on the impacts of nutrient loading in sediment communities. IMPORTANCE: In this study, we used environmental metagenomics to assess the response of microbial communities in estuarine sediments to long-term, nutrient-rich sewage effluent exposure. Unlike previous studies, which have mainly characterized communities based on taxonomic data or primer-based amplification of specific target genes, our whole-genome metagenomics approach allowed an unbiased assessment of the abundance of denitrification-related genes across the entire community. We identified strong and consistent increases in the relative abundance of gene sequences related to denitrification pathways across a broad phylogenetic range at sites exposed to long-term nutrient addition. While further work is needed to determine the consequences of these community responses in regulating environmental nutrient cycles, the increased abundance of bacteria harboring denitrification genes suggests that such processes may be locally upregulated. In addition, our results illustrate how whole-genome metagenomics combined with targeted hypothesis testing can reveal fine-scale responses of microbial communities to environmental disturbance.


Assuntos
Sedimentos Geológicos/microbiologia , Redes e Vias Metabólicas/genética , Metagenômica , Microbiota/genética , Microbiologia do Solo , Microbiologia da Água , Áreas Alagadas , Sequência de Bases , Desnitrificação/genética , Ecossistema , Sedimentos Geológicos/química , Massachusetts , Nitratos/metabolismo , Filogenia , Salinidade , Homologia de Sequência do Ácido Nucleico , Esgotos/microbiologia , Água/química
17.
Mol Ecol ; 25(11): 2333-6, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27145221

RESUMO

Richard G. Harrison passed away unexpectedly on April 12th, 2016. In this memoriam we pay tribute to the life and legacy of an extraordinary scientist, mentor, friend, husband, and father.


Assuntos
Genética/história , Hibridização Genética , Animais , Gryllidae/genética , História do Século XX , História do Século XXI
18.
PLoS Genet ; 9(1): e1003238, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23382693

RESUMO

Mitochondrial transcription, translation, and respiration require interactions between genes encoded in two distinct genomes, generating the potential for mutations in nuclear and mitochondrial genomes to interact epistatically and cause incompatibilities that decrease fitness. Mitochondrial-nuclear epistasis for fitness has been documented within and between populations and species of diverse taxa, but rarely has the genetic or mechanistic basis of these mitochondrial-nuclear interactions been elucidated, limiting our understanding of which genes harbor variants causing mitochondrial-nuclear disruption and of the pathways and processes that are impacted by mitochondrial-nuclear coevolution. Here we identify an amino acid polymorphism in the Drosophila melanogaster nuclear-encoded mitochondrial tyrosyl-tRNA synthetase that interacts epistatically with a polymorphism in the D. simulans mitochondrial-encoded tRNA(Tyr) to significantly delay development, compromise bristle formation, and decrease fecundity. The incompatible genotype specifically decreases the activities of oxidative phosphorylation complexes I, III, and IV that contain mitochondrial-encoded subunits. Combined with the identity of the interacting alleles, this pattern indicates that mitochondrial protein translation is affected by this interaction. Our findings suggest that interactions between mitochondrial tRNAs and their nuclear-encoded tRNA synthetases may be targets of compensatory molecular evolution. Human mitochondrial diseases are often genetically complex and variable in penetrance, and the mitochondrial-nuclear interaction we document provides a plausible mechanism to explain this complexity.


Assuntos
Aminoacil-tRNA Sintetases , Drosophila , Fosforilação Oxidativa , RNA de Transferência , Aminoácidos , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/fisiologia , Epistasia Genética , Evolução Molecular , Aptidão Genética , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais , Dados de Sequência Molecular , Polimorfismo Genético , RNA de Transferência/genética , Tirosina-tRNA Ligase/metabolismo
20.
bioRxiv ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39005416

RESUMO

Resistance to starvation is a classic complex trait, where genetic and environmental variables can greatly modify an animal's ability to survive without nutrients. In this study, we investigate the genetic basis of starvation resistance using complementary quantitative and classical genetic mapping in Drosophila melanogaster . Using the Drosophila Genetics Reference Panel (DGRP) as a starting point, we queried the genetic basis of starvation sensitivity in one of the most sensitive DGRP lines. We localize a major effect locus modifying starvation resistance to the phospholipase iPLA2-VIA. This finding is consistent with the work of others which demonstrate the importance of lipid regulation in starvation stress. Furthermore, we demonstrate that iPLA2-VIA plays a role in the maintenance of sugar reserves post-starvation, which highlights a key dynamic between lipid remodeling, sugar metabolism and resistance to starvation stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA