Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Pediatr Blood Cancer ; 69(1): e29344, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34550633

RESUMO

Twelvepatients without therapy-related leukemia were studied after completing TOP2 poison chemotherapy in a high-risk neuroblastoma regimen. One patient harbored an inv(11) that was a KMT2A rearrangement. The KMT2A-MAML2 transcript was expressed at low level. The patient was prospectively followed. The inv(11) was undetectable in ensuing samples. Leukemia never developed after a 12.8-year follow-up period. Enriched etoposide-induced TOP2A cleavage in the relevant MAML2 genomic region supports a TOP2A DNA damage mechanism. After completing TOP2 poison chemotherapies, covert KMT2A-R clones may occur in a small minority of patients; however, not all KMT2A rearrangements herald a therapy-related leukemia diagnosis.


Assuntos
Histona-Lisina N-Metiltransferase , Leucemia , Proteína de Leucina Linfoide-Mieloide , Neuroblastoma , Transativadores , Etoposídeo/administração & dosagem , Seguimentos , Rearranjo Gênico , Humanos , Leucemia/genética , Proteína de Leucina Linfoide-Mieloide/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Fatores de Transcrição/genética
2.
Genome Res ; 27(7): 1238-1249, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28385713

RESUMO

Type II topoisomerases orchestrate proper DNA topology, and they are the targets of anti-cancer drugs that cause treatment-related leukemias with balanced translocations. Here, we develop a high-throughput sequencing technology to define TOP2 cleavage sites at single-base precision, and use the technology to characterize TOP2A cleavage genome-wide in the human K562 leukemia cell line. We find that TOP2A cleavage has functionally conserved local sequence preferences, occurs in cleavage cluster regions (CCRs), and is enriched in introns and lincRNA loci. TOP2A CCRs are biased toward the distal regions of gene bodies, and TOP2 poisons cause a proximal shift in their distribution. We find high TOP2A cleavage levels in genes involved in translocations in TOP2 poison-related leukemia. In addition, we find that a large proportion of genes involved in oncogenic translocations overall contain TOP2A CCRs. The TOP2A cleavage of coding and lincRNA genes is independently associated with both length and transcript abundance. Comparisons to ENCODE data reveal distinct TOP2A CCR clusters that overlap with marks of transcription, open chromatin, and enhancers. Our findings implicate TOP2A cleavage as a broad DNA damage mechanism in oncogenic translocations as well as a functional role of TOP2A cleavage in regulating transcription elongation and gene activation.


Assuntos
Dano ao DNA , DNA Topoisomerases Tipo II/metabolismo , Loci Gênicos , Leucemia/enzimologia , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Elongação da Transcrição Genética , DNA Topoisomerases Tipo II/genética , Humanos , Células K562 , Leucemia/genética , Leucemia/patologia , Proteínas de Neoplasias/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/genética
3.
Proc Natl Acad Sci U S A ; 111(38): E4033-42, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25192935

RESUMO

Variation in the intracellular percentage of normal and mutant mitochondrial DNAs (mtDNA) (heteroplasmy) can be associated with phenotypic heterogeneity in mtDNA diseases. Individuals that inherit the common disease-causing mtDNA tRNA(Leu(UUR)) 3243A>G mutation and harbor ∼10-30% 3243G mutant mtDNAs manifest diabetes and occasionally autism; individuals with ∼50-90% mutant mtDNAs manifest encephalomyopathies; and individuals with ∼90-100% mutant mtDNAs face perinatal lethality. To determine the basis of these abrupt phenotypic changes, we generated somatic cell cybrids harboring increasing levels of the 3243G mutant and analyzed the associated cellular phenotypes and nuclear DNA (nDNA) and mtDNA transcriptional profiles by RNA sequencing. Small increases in mutant mtDNAs caused relatively modest defects in oxidative capacity but resulted in sharp transitions in cellular phenotype and gene expression. Cybrids harboring 20-30% 3243G mtDNAs had reduced mtDNA mRNA levels, rounded mitochondria, and small cell size. Cybrids with 50-90% 3243G mtDNAs manifest induction of glycolytic genes, mitochondrial elongation, increased mtDNA mRNA levels, and alterations in expression of signal transduction, epigenomic regulatory, and neurodegenerative disease-associated genes. Finally, cybrids with 100% 3243G experienced reduced mtDNA transcripts, rounded mitochondria, and concomitant changes in nuclear gene expression. Thus, striking phase changes occurred in nDNA and mtDNA gene expression in response to the modest changes of the mtDNA 3243G mutant levels. Hence, a major factor in the phenotypic variation in heteroplasmic mtDNA mutations is the limited number of states that the nucleus can acquire in response to progressive changes in mitochondrial retrograde signaling.


Assuntos
DNA Mitocondrial , Epigênese Genética , Mitocôndrias , Mutação Puntual , RNA Mensageiro , Transcrição Gênica , Linhagem Celular Tumoral , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/patologia , Glicólise/genética , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA de Transferência de Leucina/genética , RNA de Transferência de Leucina/metabolismo , Análise de Sequência de RNA , Transdução de Sinais/genética
4.
Diabetologia ; 59(11): 2360-2368, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27539148

RESUMO

AIMS/HYPOTHESIS: One of the most strongly associated type 2 diabetes loci reported to date resides within the TCF7L2 gene. Previous studies point to the T allele of rs7903146 in intron 3 as the causal variant at this locus. We aimed to identify the actual gene(s) under the influence of this variant. METHODS: Using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease, we generated a 1.4 kb deletion of the genomic region harbouring rs7903146 in the HCT116 cell line, followed by global gene expression analysis. We then carried out a combination of circularised chromosome conformation capture (4C) and Capture C in cell lines, HCT116 and NCM460 in order to ascertain which promoters of these perturbed genes made consistent physical contact with this genomic region. RESULTS: We observed 99 genes with significant differential expression (false discovery rate [FDR] cut-off:10%) and an effect size of at least twofold. The subsequent promoter contact analyses revealed just one gene, ACSL5, which resides in the same topologically associating domain as TCF7L2. The generation of additional, smaller deletions (66 bp and 104 bp) comprising rs7903146 showed consistently reduced ACSL5 mRNA levels across all three deletions of up to 30-fold, with commensurate loss of acyl-CoA synthetase long-chain family member 5 (ACSL5) protein. Notably, the deletion of this single-nucleotide polymorphism region abolished significantly detectable chromatin contacts with the ACSL5 promoter. We went on to confirm that contacts between rs7903146 and the ACSL5 promoter regions were conserved in human colon tissue. ACSL5 encodes ACSL5, an enzyme with known roles in fatty acid metabolism. CONCLUSIONS/INTERPRETATION: This 'variant to gene mapping' effort implicates the genomic location harbouring rs7903146 as a regulatory region for ACSL5.


Assuntos
Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Western Blotting , Proteínas Associadas a CRISPR/metabolismo , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Colo/metabolismo , Células HCT116 , Humanos , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
BMC Genomics ; 17: 486, 2016 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-27393338

RESUMO

BACKGROUND: The ability to capture and sequence large contiguous DNA fragments represents a significant advancement towards the comprehensive characterization of complex genomic regions. While emerging sequencing platforms are capable of producing several kilobases-long reads, the fragment sizes generated by current DNA target enrichment technologies remain a limiting factor, producing DNA fragments generally shorter than 1 kbp. The DNA enrichment methodology described herein, Region-Specific Extraction (RSE), produces DNA segments in excess of 20 kbp in length. Coupling this enrichment method to appropriate sequencing platforms will significantly enhance the ability to generate complete and accurate sequence characterization of any genomic region without the need for reference-based assembly. RESULTS: RSE is a long-range DNA target capture methodology that relies on the specific hybridization of short (20-25 base) oligonucleotide primers to selected sequence motifs within the DNA target region. These capture primers are then enzymatically extended on the 3'-end, incorporating biotinylated nucleotides into the DNA. Streptavidin-coated beads are subsequently used to pull-down the original, long DNA template molecules via the newly synthesized, biotinylated DNA that is bound to them. We demonstrate the accuracy, simplicity and utility of the RSE method by capturing and sequencing a 4 Mbp stretch of the major histocompatibility complex (MHC). Our results show an average depth of coverage of 164X for the entire MHC. This depth of coverage contributes significantly to a 99.94 % total coverage of the targeted region and to an accuracy that is over 99.99 %. CONCLUSIONS: RSE represents a cost-effective target enrichment method capable of producing sequencing templates in excess of 20 kbp in length. The utility of our method has been proven to generate superior coverage across the MHC as compared to other commercially available methodologies, with the added advantage of producing longer sequencing templates amenable to DNA sequencing on recently developed platforms. Although our demonstration of the method does not utilize these DNA sequencing platforms directly, our results indicate that the capture of long DNA fragments produce superior coverage of the targeted region.


Assuntos
Variação Genética , Genoma Humano , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização Genômica Comparativa/métodos , Primers do DNA , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Complexo Principal de Histocompatibilidade/genética , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
6.
Gastroenterology ; 149(6): 1415-24, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26193622

RESUMO

BACKGROUND & AIMS: Very early onset inflammatory bowel disease (VEO-IBD), IBD diagnosed at 5 years of age or younger, frequently presents with a different and more severe phenotype than older-onset IBD. We investigated whether patients with VEO-IBD carry rare or novel variants in genes associated with immunodeficiencies that might contribute to disease development. METHODS: Patients with VEO-IBD and parents (when available) were recruited from the Children's Hospital of Philadelphia from March 2013 through July 2014. We analyzed DNA from 125 patients with VEO-IBD (age, 3 wk to 4 y) and 19 parents, 4 of whom also had IBD. Exome capture was performed by Agilent SureSelect V4, and sequencing was performed using the Illumina HiSeq platform. Alignment to human genome GRCh37 was achieved followed by postprocessing and variant calling. After functional annotation, candidate variants were analyzed for change in protein function, minor allele frequency less than 0.1%, and scaled combined annotation-dependent depletion scores of 10 or less. We focused on genes associated with primary immunodeficiencies and related pathways. An additional 210 exome samples from patients with pediatric IBD (n = 45) or adult-onset Crohn's disease (n = 20) and healthy individuals (controls, n = 145) were obtained from the University of Kiel, Germany, and used as control groups. RESULTS: Four hundred genes and regions associated with primary immunodeficiency, covering approximately 6500 coding exons totaling more than 1 Mbp of coding sequence, were selected from the whole-exome data. Our analysis showed novel and rare variants within these genes that could contribute to the development of VEO-IBD, including rare heterozygous missense variants in IL10RA and previously unidentified variants in MSH5 and CD19. CONCLUSIONS: In an exome sequence analysis of patients with VEO-IBD and their parents, we identified variants in genes that regulate B- and T-cell functions and could contribute to pathogenesis. Our analysis could lead to the identification of previously unidentified IBD-associated variants.


Assuntos
Envelhecimento/genética , Exoma , Síndromes de Imunodeficiência/genética , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Mutação , Adolescente , Adulto , Antígenos CD19/genética , Proteínas de Ciclo Celular/genética , Criança , Pré-Escolar , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Alemanha , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Subunidade alfa de Receptor de Interleucina-10/genética , Masculino , Pessoa de Meia-Idade , Análise de Sequência de DNA
7.
Pediatr Blood Cancer ; 63(7): 1175-80, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26999444

RESUMO

BACKGROUND: Infant acute lymphoblastic leukemia (ALL) has never occurred in families except for the ∼100% concordant cases in monozygous twins attributed to twin-to-twin metastases. We report the first kindred with infant ALL in non-twin siblings. The siblings were diagnosed with MLL-rearranged (MLL-R) ALL 26 months apart. The second affected sibling had an unaffected dichorionic monozygous co-twin. Both had fatal outcomes. PROCEDURES: Translocations were characterized by karyotype, FISH, multiplex FISH, and MLL breakpoint cluster region (bcr) Southern blot analysis. Breakpoint junctions and fusion transcripts were cloned by PCR. TP53 mutation and NADPH quinone oxidorecuctase 1 (NQO1) C609T analyses were performed, and pedigree history and parental occupations were ascertained. The likelihood of chance occurrence of infant ALL in non-twin siblings was computed based on a binomial distribution. Zygosity was determined by single nucleotide polymorphism (SNP) array. RESULTS: The translocations were not related or vertically transmitted. The complex karyotype of the proband's ALL had chromosome 2, 3, 4, and 11 abnormalities causing a 5'-MLL-AFF1-3' fusion and a non-productive rearrangement of 3'MLL with a chromosome 3q intergenic region. The affected twin's ALL exhibited a simple t(4;11). The complex karyotype of the proband's ALL suggested a genotoxic insult, but no exposure was identified. There was no germline TP53 mutation. The NQO1 C609T risk allele was absent. The likelihood of infant ALL occurring in non-twin siblings by chance alone is one in 1.198 × 10(9) families. CONCLUSIONS: Whether because of a deleterious transplacental exposure, novel predisposition syndrome, or exceedingly rare chance occurrence, MLL-R infant ALL can occur in non-twin siblings. The discordant occurrence of infant ALL in the monozygous twins was likely because they were dichorionic.


Assuntos
Cromossomos Humanos/genética , Rearranjo Gênico , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Irmãos , Translocação Genética , Gêmeos Dizigóticos , Humanos , Lactente , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia
8.
Proc Natl Acad Sci U S A ; 110(15): 6097-102, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23479628

RESUMO

Cancer stem cells (CSCs) are plastic in nature, a characteristic that hampers cancer therapeutics. Neuroblastoma (NB) is a pediatric tumor of neural crest origin, and half of the cases are highly aggressive. By treating NB cell lines [SKNAS, SKNBE(2)C, CHP134, and SY5Y] with epigenetic modifiers for a short time, followed by sphere-forming culture conditions, we have established stem cell-like NB cells that are phenotypically stable for more than a year. These cells are characterized by their high expression of stemness factors, stem cell markers, and open chromatin structure. We referred to these cells as induced CSCs (iCSCs). SKNAS iCSC and SKNBE(2)C iCSC clones (as few as 100 cells) injected s.c. into SCID/Beige mice formed tumors, and in one case, SKNBE(2)C iCSCs metastasized to the adrenal gland, suggesting their increased metastatic potential. SKNAS iCSC xenografts showed the histologic appearance of totally undifferentiated large-cell NBs (LCNs), the most aggressive and deadly form of NB in humans. Immunohistochemical analyses showed that SKNAS iCSC xenografts expressed high levels of the stem cell marker CXCR4, whereas the SKNAS monolayer cell xenografts did not. The patterns of CXCR4 and MYC expression in SKNAS iCSC xenografts resembled those in the LCNs. The xenografts established from the NB iCSCs shared two common features: the LCN phenotype and high-level MYC/MYCN expression. These observations suggest both that NB cells with large and vesicular nuclei, representing their open chromatin structure, are indicative of stem cell-like tumor cells and that epigenetic changes may have contributed to the development of these most malignant NB cells.


Assuntos
Linhagem Celular Tumoral , Células-Tronco Neoplásicas/citologia , Neuroblastoma/genética , Animais , Biomarcadores Tumorais/metabolismo , Nucléolo Celular/genética , Núcleo Celular/metabolismo , Metilação de DNA , Epigênese Genética , Perfilação da Expressão Gênica , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos SCID , Transplante de Neoplasias , Fenótipo
9.
BMC Gastroenterol ; 15: 160, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26581487

RESUMO

BACKGROUND: Children with very early-onset inflammatory bowel disease (VEO-IBD), those diagnosed at less than 5 years of age, are a unique population. A subset of these patients present with a distinct phenotype and more severe disease than older children and adults. Host genetics is thought to play a more prominent role in this young population, and monogenic defects in genes related to primary immunodeficiencies are responsible for the disease in a small subset of patients with VEO-IBD. CASE PRESENTATION: We report a child who presented at 3 weeks of life with very early-onset inflammatory bowel disease (VEO-IBD). He had a complicated disease course and remained unresponsive to medical and surgical therapy. The refractory nature of his disease, together with his young age of presentation, prompted utilization of whole exome sequencing (WES) to detect an underlying monogenic primary immunodeficiency and potentially target therapy to the identified defect. Copy number variation analysis (CNV) was performed using the eXome-Hidden Markov Model. Whole exome sequencing revealed 1,380 nonsense and missense variants in the patient. Plausible candidate variants were not detected following analysis of filtered variants, therefore, we performed CNV analysis of the WES data, which led us to identify a de novo whole gene deletion in XIAP. CONCLUSION: This is the first reported whole gene deletion in XIAP, the causal gene responsible for XLP2 (X-linked lymphoproliferative Disease 2). XLP2 is a syndrome resulting in VEO-IBD and can increase susceptibility to hemophagocytic lymphohistocytosis (HLH). This identification allowed the patient to be referred for bone marrow transplantation, potentially curative for his disease and critical to prevent the catastrophic sequela of HLH. This illustrates the unique etiology of VEO-IBD, and the subsequent effects on therapeutic options. This cohort requires careful and thorough evaluation for monogenic defects and primary immunodeficiencies.


Assuntos
Exoma , Deleção de Genes , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Inflamatórias Intestinais/genética , Transtornos Linfoproliferativos/genética , Idade de Início , Variações do Número de Cópias de DNA , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Humanos , Recém-Nascido , Transtornos Linfoproliferativos/complicações , Masculino
10.
Nature ; 459(7249): 987-91, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19536264

RESUMO

Common copy number variations (CNVs) represent a significant source of genetic diversity, yet their influence on phenotypic variability, including disease susceptibility, remains poorly understood. To address this problem in human cancer, we performed a genome-wide association study of CNVs in the childhood cancer neuroblastoma, a disease in which single nucleotide polymorphism variations are known to influence susceptibility. We first genotyped 846 Caucasian neuroblastoma patients and 803 healthy Caucasian controls at approximately 550,000 single nucleotide polymorphisms, and performed a CNV-based test for association. We then replicated significant observations in two independent sample sets comprised of a total of 595 cases and 3,357 controls. Here we describe the identification of a common CNV at chromosome 1q21.1 associated with neuroblastoma in the discovery set, which was confirmed in both replication sets. This CNV was validated by quantitative polymerase chain reaction, fluorescent in situ hybridization and analysis of matched tumour specimens, and was shown to be heritable in an independent set of 713 cancer-free parent-offspring trios. We identified a previously unknown transcript within the CNV that showed high sequence similarity to several neuroblastoma breakpoint family (NBPF) genes and represents a new member of this gene family (NBPF23). This transcript was preferentially expressed in fetal brain and fetal sympathetic nervous tissues, and the expression level was strictly correlated with CNV state in neuroblastoma cells. These data demonstrate that inherited copy number variation at 1q21.1 is associated with neuroblastoma and implicate a previously unknown neuroblastoma breakpoint family gene in early tumorigenesis of this childhood cancer.


Assuntos
Cromossomos Humanos Par 1/genética , Dosagem de Genes/genética , Variação Genética/genética , Neuroblastoma/genética , Criança , Quebra Cromossômica , Feto/metabolismo , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Hibridização in Situ Fluorescente , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/genética , Reprodutibilidade dos Testes , População Branca/genética
11.
Nature ; 459(7246): 528-33, 2009 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-19404256

RESUMO

Autism spectrum disorders (ASDs) represent a group of childhood neurodevelopmental and neuropsychiatric disorders characterized by deficits in verbal communication, impairment of social interaction, and restricted and repetitive patterns of interests and behaviour. To identify common genetic risk factors underlying ASDs, here we present the results of genome-wide association studies on a cohort of 780 families (3,101 subjects) with affected children, and a second cohort of 1,204 affected subjects and 6,491 control subjects, all of whom were of European ancestry. Six single nucleotide polymorphisms between cadherin 10 (CDH10) and cadherin 9 (CDH9)-two genes encoding neuronal cell-adhesion molecules-revealed strong association signals, with the most significant SNP being rs4307059 (P = 3.4 x 10(-8), odds ratio = 1.19). These signals were replicated in two independent cohorts, with combined P values ranging from 7.4 x 10(-8) to 2.1 x 10(-10). Our results implicate neuronal cell-adhesion molecules in the pathogenesis of ASDs, and represent, to our knowledge, the first demonstration of genome-wide significant association of common variants with susceptibility to ASDs.


Assuntos
Transtorno Autístico/genética , Cromossomos Humanos Par 5/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Encéfalo/metabolismo , Caderinas/genética , Estudos de Casos e Controles , Adesão Celular/genética , Moléculas de Adesão Celular Neuronais/genética , Estudos de Coortes , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes
12.
Pediatr Emerg Care ; 31(7): 465-72, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26125533

RESUMO

BACKGROUND: Adolescents are at high risk for pelvic inflammatory disease (PID). Because accurate diagnosis of PID is difficult, and complications of untreated PID are significant, novel methods to improve diagnosis are essential. OBJECTIVES: To determine if patients with PID have unique RNA expression patterns compared to controls. METHODS: Peripheral blood was collected from adolescent females with PID in the emergency department, and from control patients in the operating room. RNA was isolated, and microarray analysis was performed. Initial analysis involved a training set of 18 patients (9 PID patients with either Neisseria gonorrhoeae or Chlamydia trachomatis infection and 9 control patients). Supervised and unsupervised cluster analyses were performed, followed by network analysis. The training set was used to classify a set of 15 additional PID patients and 2 controls. RESULTS: Supervised cluster analysis of the training set revealed 170 genes which were differentially expressed in PID patients versus controls. Network analysis indicated that several differentially expressed genes are involved in immune activation. Analysis of additional PID patients based on the training set findings revealed that patients with positive testing for Trichomonas vaginalis partitioned with the PID group, whereas patients with no organism identified partitioned with both groups. CONCLUSIONS: RNA sample collection from adolescents in the emergency department is feasible. Genes were identified which were differentially expressed in PID patients versus controls, many of which are involved in inflammation. Future studies should confirm the training set findings on a larger sample and may lead to improved accuracy of PID diagnosis.


Assuntos
Marcadores Genéticos/genética , Análise em Microsséries/métodos , Doença Inflamatória Pélvica/genética , RNA/genética , Infecções Sexualmente Transmissíveis/genética , Adolescente , Criança , Chlamydia trachomatis/isolamento & purificação , Estudos Transversais , Serviço Hospitalar de Emergência , Feminino , Expressão Gênica , Hospitais Pediátricos , Humanos , Neisseria gonorrhoeae/isolamento & purificação , Doença Inflamatória Pélvica/microbiologia , Infecções Sexualmente Transmissíveis/microbiologia , Trichomonas vaginalis/isolamento & purificação , Adulto Jovem
13.
Nature ; 455(7215): 930-5, 2008 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-18724359

RESUMO

Neuroblastoma is a childhood cancer that can be inherited, but the genetic aetiology is largely unknown. Here we show that germline mutations in the anaplastic lymphoma kinase (ALK) gene explain most hereditary neuroblastomas, and that activating mutations can also be somatically acquired. We first identified a significant linkage signal at chromosome bands 2p23-24 using a whole-genome scan in neuroblastoma pedigrees. Resequencing of regional candidate genes identified three separate germline missense mutations in the tyrosine kinase domain of ALK that segregated with the disease in eight separate families. Resequencing in 194 high-risk neuroblastoma samples showed somatically acquired mutations in the tyrosine kinase domain in 12.4% of samples. Nine of the ten mutations map to critical regions of the kinase domain and were predicted, with high probability, to be oncogenic drivers. Mutations resulted in constitutive phosphorylation, and targeted knockdown of ALK messenger RNA resulted in profound inhibition of growth in all cell lines harbouring mutant or amplified ALK, as well as in two out of six wild-type cell lines for ALK. Our results demonstrate that heritable mutations of ALK are the main cause of familial neuroblastoma, and that germline or acquired activation of this cell-surface kinase is a tractable therapeutic target for this lethal paediatric malignancy.


Assuntos
Predisposição Genética para Doença/genética , Mutação/genética , Neuroblastoma/enzimologia , Neuroblastoma/genética , Proteínas Tirosina Quinases/genética , Quinase do Linfoma Anaplásico , Sequência de Bases , Linhagem Celular Tumoral , Criança , Cromossomos Humanos Par 2/genética , Feminino , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Linhagem , Fosforilação , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/deficiência , Receptores Proteína Tirosina Quinases
14.
Nature ; 448(7153): 591-4, 2007 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-17632545

RESUMO

Type 1 diabetes (T1D) in children results from autoimmune destruction of pancreatic beta cells, leading to insufficient production of insulin. A number of genetic determinants of T1D have already been established through candidate gene studies, primarily within the major histocompatibility complex but also within other loci. To identify new genetic factors that increase the risk of T1D, we performed a genome-wide association study in a large paediatric cohort of European descent. In addition to confirming previously identified loci, we found that T1D was significantly associated with variation within a 233-kb linkage disequilibrium block on chromosome 16p13. This region contains KIAA0350, the gene product of which is predicted to be a sugar-binding, C-type lectin. Three common non-coding variants of the gene (rs2903692, rs725613 and rs17673553) in strong linkage disequilibrium reached genome-wide significance for association with T1D. A subsequent transmission disequilibrium test replication study in an independent cohort confirmed the association. These results indicate that KIAA0350 might be involved in the pathogenesis of T1D and demonstrate the utility of the genome-wide association approach in the identification of previously unsuspected genetic determinants of complex traits.


Assuntos
Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença/genética , Genoma Humano/genética , Proteínas de Transporte de Monossacarídeos/genética , Estudos de Casos e Controles , Estudos de Coortes , Marcadores Genéticos/genética , Humanos , Lectinas Tipo C , Desequilíbrio de Ligação/genética , Núcleo Familiar , Polimorfismo de Nucleotídeo Único/genética
15.
Nat Genet ; 36(6): 631-5, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15146186

RESUMO

Cornelia de Lange syndrome (CdLS; OMIM 122470) is a dominantly inherited multisystem developmental disorder characterized by growth and cognitive retardation; abnormalities of the upper limbs; gastroesophageal dysfunction; cardiac, ophthalmologic and genitourinary anomalies; hirsutism; and characteristic facial features. Genital anomalies, pyloric stenosis, congenital diaphragmatic hernias, cardiac septal defects, hearing loss and autistic and self-injurious tendencies also frequently occur. Prevalence is estimated to be as high as 1 in 10,000 (ref. 4). We carried out genome-wide linkage exclusion analysis in 12 families with CdLS and identified four candidate regions, of which chromosome 5p13.1 gave the highest multipoint lod score of 2.7. This information, together with the previous identification of a child with CdLS with a de novo t(5;13)(p13.1;q12.1) translocation, allowed delineation of a 1.1-Mb critical region on chromosome 5 for the gene mutated in CdLS. We identified mutations in one gene in this region, which we named NIPBL, in four sporadic and two familial cases of CdLS. We characterized the genomic structure of NIPBL and found that it is widely expressed in fetal and adult tissues. The fly homolog of NIPBL, Nipped-B, facilitates enhancer-promoter communication and regulates Notch signaling and other developmental pathways in Drosophila melanogaster.


Assuntos
Proteínas de Ligação a DNA/genética , Síndrome de Cornélia de Lange/genética , Proteínas de Drosophila/genética , Mutação , Animais , Cromossomos Humanos Par 5/genética , Síndrome de Cornélia de Lange/embriologia , Síndrome de Cornélia de Lange/patologia , Drosophila melanogaster/genética , Feminino , Genes de Insetos , Ligação Genética , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Dados de Sequência Molecular , Especificidade da Espécie
16.
Genome Res ; 19(9): 1682-90, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19592680

RESUMO

We present a database of copy number variations (CNVs) detected in 2026 disease-free individuals, using high-density, SNP-based oligonucleotide microarrays. This large cohort, comprised mainly of Caucasians (65.2%) and African-Americans (34.2%), was analyzed for CNVs in a single study using a uniform array platform and computational process. We have catalogued and characterized 54,462 individual CNVs, 77.8% of which were identified in multiple unrelated individuals. These nonunique CNVs mapped to 3272 distinct regions of genomic variation spanning 5.9% of the genome; 51.5% of these were previously unreported, and >85% are rare. Our annotation and analysis confirmed and extended previously reported correlations between CNVs and several genomic features such as repetitive DNA elements, segmental duplications, and genes. We demonstrate the utility of this data set in distinguishing CNVs with pathologic significance from normal variants. Together, this analysis and annotation provides a useful resource to assist with the assessment of CNVs in the contexts of human variation, disease susceptibility, and clinical molecular diagnostics.


Assuntos
Mapeamento Cromossômico/métodos , Bases de Dados Genéticas , Dosagem de Genes/genética , Variação Genética , Genoma Humano/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , População Negra/genética , Criança , Duplicação Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Projetos de Pesquisa , População Branca/genética
17.
PLoS Biol ; 7(5): e1000119, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19468298

RESUMO

Cohesin regulates sister chromatid cohesion during the mitotic cell cycle with Nipped-B-Like (NIPBL) facilitating its loading and unloading. In addition to this canonical role, cohesin has also been demonstrated to play a critical role in regulation of gene expression in nondividing cells. Heterozygous mutations in the cohesin regulator NIPBL or cohesin structural components SMC1A and SMC3 result in the multisystem developmental disorder Cornelia de Lange Syndrome (CdLS). Genome-wide assessment of transcription in 16 mutant cell lines from severely affected CdLS probands has identified a unique profile of dysregulated gene expression that was validated in an additional 101 samples and correlates with phenotypic severity. This profile could serve as a diagnostic and classification tool. Cohesin binding analysis demonstrates a preference for intergenic regions suggesting a cis-regulatory function mimicking that of a boundary/insulator interacting protein. However, the binding sites are enriched within the promoter regions of the dysregulated genes and are significantly decreased in CdLS proband, indicating an alternative role of cohesin as a transcription factor.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Regulação da Expressão Gênica , Proteínas/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Imunoprecipitação da Cromatina , Bases de Dados Genéticas , Síndrome de Cornélia de Lange/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas/genética
18.
Bipolar Disord ; 14(8): 809-21, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22966748

RESUMO

OBJECTIVES: Genome-wide association studies (GWAS) recently identified ankyrin 3 (ANK3) as a candidate gene for bipolar disorder type I (BPD-I). Because the GWAS suggested multiple common haplotypes associated with BPD-I (with odds ratio ~1.3), we hypothesized that rare variants within these common haplotypes might increase risk for BPD-I. METHODS: We undertook a project in which the serine-rich domain-tail domain (SRD-TD)-encoding exon of ANK3 was amplified from genomic DNA (gDNA) of 384 BPD-I patients and re-sequenced by next generation sequencing (NGS; SOLiD™). RESULTS: We confirmed 18 novel mis-sense rare variants and one novel insertion/deletion variant within the SRD-TD exon, many of which change amino acid residues with extremely high evolutionary conservation. We genotyped most of these mis-sense variants in ≥ 1000 BPD-I and ≥ 1000 control individuals. We found no statistically significant association of any of the rare variants detected with BPD-I. CONCLUSIONS: Thus, we conclude that rare variants within the re-sequenced structural domains of ANK3 exon 48 do not contribute to BPD-I.


Assuntos
Anquirinas/genética , Transtorno Bipolar/genética , Éxons/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Estudos de Casos e Controles , Saúde da Família , Feminino , Frequência do Gene , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Escalas de Graduação Psiquiátrica , Reprodutibilidade dos Testes , Análise de Sequência de DNA
19.
Hum Mutat ; 32(1): 91-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21120947

RESUMO

The 22q11 Deletion Syndrome includes the overlapping phenotypes of DiGeorge/Velocardiofacial Syndromes, characterized by conotruncal heart defects, cleft palate, thymus, and parathyroid gland dysplasia. The majority (90%) of patients harbor detectable chr22q11.2 deletions, but a genetic etiology for the remainder of patients without a deletion can remain undefined despite major birth defects. We analyzed DNA from eight patients with normal 22q11 FISH studies by high-density single nucleotide polymorphism (SNP) arrays and identified potentially pathogenic copy number variants (CNVs) in four of eight patients. Two patients showed large CNVs in regions of known genomic disorders: one a deletion of distal chr22q11.2 and the other a duplication of chr5q35. A 3-Mb deletion of chr19p13.3 that includes a gene associated with conotruncal heart defects was found in a third patient. Two potentially pathogenic CNVs were found in a fourth patient: a large heterozygous deletion of chr6p24 and a smaller duplication of chr9p24. Our findings support a recent consensus statement advocating chromosomal microarray analysis as a first-line diagnostic approach for patients with multiple congenital anomalies. In patients with phenotypes suggestive of the 22q11.2 syndrome spectrum and normal FISH, microarray analysis can uncover the molecular basis of other genomic disorders whose features overlap those of 22q11.2 deletions.


Assuntos
Síndrome da Deleção 22q11/genética , Variações do Número de Cópias de DNA/genética , Genoma Humano/genética , Análise em Microsséries , Deleção Cromossômica , Síndrome de DiGeorge/genética , Feminino , Genótipo , Humanos , Masculino , Fenótipo
20.
N Engl J Med ; 358(24): 2585-93, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18463370

RESUMO

BACKGROUND: Neuroblastoma is a malignant condition of the developing sympathetic nervous system that most commonly affects young children and is often lethal. Its cause is not known. METHODS: We performed a genomewide association study by first genotyping blood DNA samples from 1032 patients with neuroblastoma and 2043 control subjects of European descent using the Illumina HumanHap550 BeadChip. Samples from three independent groups of patients with neuroblastoma (a total of 720 patients) and 2128 control subjects were then genotyped to replicate significant associations. RESULTS: We observed a significant association between neuroblastoma and the common minor alleles of three consecutive single-nucleotide polymorphisms (SNPs) at chromosome band 6p22 and containing the predicted genes FLJ22536 and FLJ44180 (P=1.71x10(-9) to 7.01x10(-10); allelic odds ratio, 1.39 to 1.40). Homozygosity for the at-risk G allele of the most significantly associated SNP, rs6939340, resulted in an increased likelihood of the development of neuroblastoma (odds ratio, 1.97; 95% confidence interval, 1.58 to 2.45). Subsequent genotyping of the three 6p22 SNPs in three independent case series confirmed our observation of an association (P=9.33x10(-15) at rs6939340 for joint analysis). Patients with neuroblastoma who were homozygous for the risk alleles at 6p22 were more likely to have metastatic (stage 4) disease (P=0.02), amplification of the MYCN oncogene in the tumor cells (P=0.006), and disease relapse (P=0.01). CONCLUSIONS: A common genetic variation at chromosome band 6p22 is associated with susceptibility to neuroblastoma.


Assuntos
Transformação Celular Neoplásica/genética , Cromossomos Humanos Par 6/genética , Neuroblastoma/genética , Polimorfismo de Nucleotídeo Único , Alelos , Estudos de Casos e Controles , Pré-Escolar , Intervalo Livre de Doença , Feminino , Predisposição Genética para Doença , Genótipo , Homozigoto , Humanos , Lactente , Masculino , Proteína Proto-Oncogênica N-Myc , Estadiamento de Neoplasias , Neuroblastoma/patologia , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA