Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902092

RESUMO

Shigellosis causes more than 200,000 deaths worldwide and most of this burden falls on Low- and Middle-Income Countries (LMICs), with a particular incidence in children under 5 years of age. In the last decades, Shigella has become even more worrisome because of the onset of antimicrobial-resistant strains (AMR). Indeed, the WHO has listed Shigella as one of the priority pathogens for the development of new interventions. To date, there are no broadly available vaccines against shigellosis, but several candidates are being evaluated in preclinical and clinical studies, bringing to light very important data and information. With the aim to facilitate the understanding of the state-of-the-art of Shigella vaccine development, here we report what is known about Shigella epidemiology and pathogenesis with a focus on virulence factors and potential antigens for vaccine development. We discuss immunity after natural infection and immunization. In addition, we highlight the main characteristics of the different technologies that have been applied for the development of a vaccine with broad protection against Shigella.


Assuntos
Anti-Infecciosos , Disenteria Bacilar , Vacinas contra Shigella , Shigella , Criança , Humanos , Pré-Escolar , Fatores de Virulência
2.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830042

RESUMO

Shigella is a leading diarrheal cause of morbidity and mortality worldwide, especially in low- and middle-income countries and in children under five years of age. Increasing levels of antimicrobial resistance make vaccine development an even higher global health priority. S. flexneri serotype 6 is one of the targets of many multicomponent vaccines in development to ensure broad protection against Shigella. The O-antigen (OAg) is a key active ingredient and its content is a critical quality attribute for vaccine release in order to monitor their stability and to ensure appropriate immune response. Here, the optimization of two methods to quantify S. flexneri 6 OAg is reported together with the characterization of their performances. The optimized Dische colorimetric method allows a tenfold increment of the sensitivity with respect to the original method and is useful for fast analysis detecting selectively methyl-pentoses, as rhamnose in S. flexneri 6 OAg. Also, a more specific HPAEC-PAD method was developed, detecting the dimer galacturonic acid-galactosamine (GalA-GalN) coming from S. flexneri 6 OAg acid hydrolysis. These methods will facilitate characterization of S. flexneri 6 OAg based vaccines. The colorimetric method can be used for quantification of other polysaccharide containing methyl-pentoses, and the HPAEC-PAD could be extended to other polysaccharides containing uronic acids.


Assuntos
Antígenos O/química , Antígenos O/isolamento & purificação , Shigella flexneri/química , Ácidos Hexurônicos/química , Ácidos Hexurônicos/isolamento & purificação , Pentoses/química , Pentoses/isolamento & purificação
3.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919847

RESUMO

Klebsiella pneumoniae (Kp) is an opportunistic pathogen and the leading cause of healthcare-associated infections, mostly affecting subjects with compromised immune systems or suffering from concurrent bacterial infections. However, the dramatic increase in hypervirulent strains and the emergence of new multidrug-resistant clones resulted in Kp occurrence among previously healthy people and in increased morbidity and mortality, including neonatal sepsis and death across low- and middle-income countries. As a consequence, carbapenem-resistant and extended spectrum ß-lactamase-producing Kp have been prioritized as a critical anti-microbial resistance threat by the World Health Organization and this has renewed the interest of the scientific community in developing a vaccine as well as treatments alternative to the now ineffective antibiotics. Capsule polysaccharide is the most important virulence factor of Kp and plays major roles in the pathogenesis but its high variability (more than 100 different types have been reported) makes the identification of a universal treatment or prevention strategy very challenging. However, less variable virulence factors such as the O-Antigen, outer membrane proteins as fimbriae and siderophores might also be key players in the fight against Kp infections. Here, we review elements of the current status of the epidemiology and the molecular pathogenesis of Kp and explore specific bacterial antigens as potential targets for both prophylactic and therapeutic solutions.


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/genética , Antibacterianos/efeitos adversos , Carbapenêmicos/efeitos adversos , Carbapenêmicos/uso terapêutico , Humanos , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/genética , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/patogenicidade , beta-Lactamases/efeitos adversos , beta-Lactamases/uso terapêutico
4.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525644

RESUMO

Recently, generalized modules for membrane antigens (GMMA) technology has been proposed as an alternative approach to traditional glycoconjugate vaccines for O-antigen delivery. Saccharide length is a well-known parameter that can impact the immune response induced by glycoconjugates both in terms of magnitude and quality. However, the criticality of O-antigen length on the immune response induced by GMMA-based vaccines has not been fully elucidated. Here, Shigella and Salmonella GMMA-producing strains were further mutated in order to display homogeneous polysaccharide populations of different sizes on a GMMA surface. Resulting GMMA were compared in mice immunization studies. Athymic nude mice were also used to investigate the involvement of T-cells in the immune response elicited. In contrast with what has been reported for traditional glycoconjugate vaccines and independent of the pathogen and the sugar structural characteristics, O-antigen length did not result in being a critical parameter for GMMA immunogenicity. This work supports the identification of critical quality attributes to optimize GMMA vaccine design and improve vaccine efficacy and gives insights on the nature of the immune response induced by GMMA.


Assuntos
Vacinas Bacterianas/administração & dosagem , Antígenos O/genética , Salmonella typhimurium/imunologia , Shigella flexneri/imunologia , Shigella sonnei/imunologia , Animais , Anticorpos Antibacterianos/análise , Vacinas Bacterianas/imunologia , Desenho de Fármacos , Engenharia Genética , Imunização , Camundongos , Camundongos Nus , Mutação , Antígenos O/administração & dosagem , Antígenos O/imunologia , Salmonella typhimurium/genética , Soro/imunologia , Shigella flexneri/genética , Shigella sonnei/genética , Linfócitos T/imunologia
5.
Anal Chem ; 92(9): 6304-6311, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32330386

RESUMO

Typhoid fever is a major cause of morbidity and mortality in developing countries. Vaccines based on the Vi capsular polysaccharide are licensed or in development against typhoid fever. Vi content is a critical quality attribute for vaccines release, to monitor their stability and to ensure appropriate immune response. Vi polysaccharide is a homopolymer of α-1,4-N-acetylgalactosaminouronic acid, O-acetylated at the C-3 position, resistant to the commonly used acid hydrolysis for sugar chain depolymerization before monomer quantification. We previously developed a quantification method based on strong alkaline hydrolysis followed by High Performance Anion Exchange Chromatography-Pulsed Amperometric Detection analysis, but with low sensitivity and use for quantification of an unknown product coming from polysaccharide depolymerization. Here we describe the development of a method for Vi polysaccharide quantification based on acid hydrolysis with concomitant use of trifluoroacetic and hydrochloric acids. A Design of Experiment approach was used for the identification of the optimal hydrolysis conditions. The method is 100-fold more sensitive than the previous one, and specifically, resulting in the formation of a known product, confirmed to be the Vi monomer both de-O- and de-N-acetylated by mono- and bidimensional Nuclear Magnetic Resonance spectroscopy and mass spectrometry. Accuracy and precision were determined, and chromatographic conditions were improved to result in reduced time of analysis. This method will facilitate characterization of Vi-based vaccines. Furthermore, a similar approach has the potential to be extended to other polysaccharides containing 2-amino uronic acids, as already verified here for Shigella sonnei O-antigen, Streptococcus pneumoniae serotype 12F, and Staphylococcus aureus types 5 and 8 capsular polysaccharides.


Assuntos
Cromatografia por Troca Iônica/métodos , Polissacarídeos Bacterianos/análise , Ácidos Urônicos/química , Cromatografia Líquida de Alta Pressão , Técnicas Eletroquímicas , Ácido Clorídrico/química , Hidrólise , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Polissacarídeos Bacterianos/metabolismo , Reprodutibilidade dos Testes , Ácido Trifluoracético/química , Vacinas Tíficas-Paratíficas/análise , Vacinas Tíficas-Paratíficas/metabolismo
6.
Chemistry ; 25(71): 16277-16287, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31506992

RESUMO

Group B Streptococcus serotypes Ia and Ib capsular polysaccharides are key targets for vaccine development. In spite of their immunospecifity these polysaccharides share high structural similarity. Both are composed of the same monosaccharide residues and differ only in the connection of the Neu5Acα2-3Gal side chain to the GlcNAc unit, which is a ß1-4 linkage in serotype Ia and a ß1-3 linkage in serotype Ib. The development of efficient regioselective routes for GlcNAcß1-3[Glcß1-4]Gal synthons is described, which give access to different group B Streptococcus (GBS) Ia and Ib repeating unit frameshifts. These glycans were used to probe the conformation and molecular dynamics of the two polysaccharides, highlighting the different presentation of the protruding Neu5Acα2-3Gal moieties on the polysaccharide backbones and a higher flexibility of Ib polymer relative to Ia, which can impact epitope exposure.


Assuntos
Cápsulas Bacterianas/química , Polissacarídeos Bacterianos/síntese química , Streptococcus/metabolismo , Cápsulas Bacterianas/metabolismo , Glucosamina/química , Glicosilação , Conformação Molecular , Polissacarídeos Bacterianos/química , Sorogrupo , Estereoisomerismo
7.
Front Cell Infect Microbiol ; 14: 1347813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487353

RESUMO

Introduction: Different serovars of Salmonella enterica cause systemic diseases in humans including enteric fever, caused by S. Typhi and S. Paratyphi A, and invasive nontyphoidal salmonellosis (iNTS), caused mainly by S. Typhimurium and S. Enteritidis. No vaccines are yet available against paratyphoid fever and iNTS but different strategies, based on the immunodominant O-Antigen component of the lipopolysaccharide, are currently being tested. The O-Antigens of S. enterica serovars share structural features including the backbone comprising mannose, rhamnose and galactose as well as further modifications such as O-acetylation and glucosylation. The importance of these O-Antigen decorations for the induced immunogenicity and cross-reactivity has been poorly characterized. Methods: These immunological aspects were investigated in this study using Generalized Modules for Membrane Antigens (GMMA) as delivery systems for the different O-Antigen variants. This platform allowed the rapid generation and in vivo testing of defined and controlled polysaccharide structures through genetic manipulation of the O-Antigen biosynthetic genes. Results: Results from mice and rabbit immunization experiments highlighted the important role played by secondary O-Antigen decorations in the induced immunogenicity. Moreover, molecular modeling of O-Antigen conformations corroborated the likelihood of cross-protection between S. enterica serovars. Discussion: Such results, if confirmed in humans, could have a great impact on the design of a simplified vaccine composition able to maximize functional immune responses against clinically relevant Salmonella enterica serovars.


Assuntos
Infecções por Salmonella , Vacinas contra Salmonella , Salmonella enterica , Humanos , Animais , Camundongos , Coelhos , Antígenos O/genética , Salmonella enterica/genética , Salmonella typhimurium/genética , Sorogrupo , Imunidade , Modelos Animais , Vacinas contra Salmonella/genética
8.
Front Immunol ; 15: 1374293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680489

RESUMO

Introduction: Shigella is the etiologic agent of a bacillary dysentery known as shigellosis, which causes millions of infections and thousands of deaths worldwide each year due to Shigella's unique lifestyle within intestinal epithelial cells. Cell adhesion/invasion assays have been extensively used not only to identify targets mediating host-pathogen interaction, but also to evaluate the ability of Shigella-specific antibodies to reduce virulence. However, these assays are time-consuming and labor-intensive and fail to assess differences at the single-cell level. Objectives and methods: Here, we developed a simple, fast and high-content method named visual Adhesion/Invasion Inhibition Assay (vAIA) to measure the ability of anti-Shigellaantibodies to inhibit bacterial adhesion to and invasion of epithelial cells by using the confocal microscope Opera Phenix. Results: We showed that vAIA performed well with a pooled human serum from subjects challenged with S. sonnei and that a specific anti-IpaD monoclonal antibody effectively reduced bacterial virulence in a dose-dependent manner. Discussion: vAIA can therefore inform on the functionality of polyclonal and monoclonal responses thereby supporting the discovery of pathogenicity mechanisms and the development of candidate vaccines and immunotherapies. Lastly, this assay is very versatile and may be easily applied to other Shigella species or serotypes and to different pathogens.


Assuntos
Anticorpos Antibacterianos , Aderência Bacteriana , Disenteria Bacilar , Humanos , Aderência Bacteriana/imunologia , Disenteria Bacilar/imunologia , Disenteria Bacilar/microbiologia , Disenteria Bacilar/diagnóstico , Anticorpos Antibacterianos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Shigella/imunologia , Shigella/patogenicidade , Células Epiteliais/microbiologia , Células Epiteliais/imunologia , Shigella sonnei/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Células HeLa
9.
Biology (Basel) ; 13(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38666868

RESUMO

Klebsiella pneumoniae (Kp) is a Gram-negative bacterium, and a leading cause of neonatal sepsis in low- and middle-income countries, often associated with anti-microbial resistance. Two types of polysaccharides are expressed on the Kp cell surface and have been proposed as key antigens for vaccine design: capsular polysaccharides (known as K-antigens, K-Ags) and O-antigens (O-Ags). Historically, Kp has been classified using capsule serotyping and although 186 distinct genotypes have been predicted so far based on sequence analysis, many structures are still unknown. In contrast, only 11 distinct OAg serotypes have been described. The characterization of emerging strains requires the development of a high-throughput purification method to obtain sufficient K- and O-Ag material to characterize the large collection of serotypes and gain insight on structural features and potential cross-reactivity that could allow vaccine simplification. Here, this was achieved by adapting our established method for the simple purification of O-Ags, using mild acetic acid hydrolysis performed directly on bacterial cells, followed by filtration and precipitation steps. The method was successfully applied to purify the surface carbohydrates from different Kp strains, thereby demonstrating the robustness and general applicability of the purification method developed. Further, antigen characterization showed that the purification method had no impact on the structural integrity of the polysaccharides and preserved labile substituents such as O-acetyl and pyruvyl groups. This method can be further optimized for scaling up and manufacturing to support the development of high-valency saccharide-based vaccines against Kp.

10.
Semin Immunopathol ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078911

RESUMO

The COVID-19 pandemic had a significant economic and health impact worldwide. It also reinforced the misperception that only viruses can pose a threat to human existence, overlooking that bacteria (e.g., plague and cholera) have severely haunted and shaped the course of human civilization. While the world is preparing for the next viral pandemic, it is again overlooking a silent one: antimicrobial resistance (AMR). This review proposes to show the impact of bacterial infections on civilization to remind the pandemic potential. The work will also discuss a few examples of how bacteria can mutate risking global spread and devastating outcomes, the effect on the global burden, and the prophylactic and therapeutic measures. Indeed, AMR is dramatically increasing and if the trend is not reversed, it has the potential to quickly turn into the most important health problem worldwide.

11.
NPJ Vaccines ; 8(1): 130, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670042

RESUMO

Shigellosis is a leading cause of diarrheal disease in low-middle-income countries (LMICs). Effective vaccines will help to reduce the disease burden, exacerbated by increasing antibiotic resistance, in the most susceptible population represented by young children. A challenge for a broadly protective vaccine against shigellosis is to cover the most epidemiologically relevant serotypes among >50 Shigella serotypes circulating worldwide. The GMMA platform has been proposed as an innovative delivery system for Shigella O-antigens, and we have developed a 4-component vaccine against S. sonnei, S. flexneri 1b, 2a and 3a identified among the most prevalent Shigella serotypes in LMICs. Driven by the immunogenicity results obtained in clinic with a first-generation mono-component vaccine, a new S. sonnei GMMA construct was generated and combined with three S. flexneri GMMA in a 4-component Alhydrogel formulation (altSonflex1-2-3). This formulation was highly immunogenic, with no evidence of negative antigenic interference in mice and rabbits. The vaccine induced bactericidal antibodies also against heterologous Shigella strains carrying O-antigens different from those included in the vaccine. The Monocyte Activation Test used to evaluate the potential reactogenicity of the vaccine formulation revealed no differences compared to the S. sonnei mono-component vaccine, shown to be safe in several clinical trials in adults. A GLP toxicology study in rabbits confirmed that the vaccine was well tolerated. The preclinical study results support the clinical evaluation of altSonflex1-2-3 in healthy populations, and a phase 1-2 clinical trial is currently ongoing.

12.
NPJ Vaccines ; 7(1): 69, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773292

RESUMO

Generalized modules for membrane antigens (GMMA) are exosomes released from engineered Gram-negative bacteria and represent an attractive vaccine platform for the delivery of the O-Antigen (OAg), recognized as the key target for protective immunity against several pathogens such as Shigella. Shigella is a major cause of disease in Low- and Middle-Income countries and the development of a vaccine needs to deal with its large serotypic diversity. All S. flexneri serotypes, except serotype 6, share a conserved OAg backbone, corresponding to serotype Y. Here, a GMMA-producing S. flexneri scaffold strain displaying the OAg backbone was engineered with different OAg-modifying enzymes, either individually or in combinations. This strategy rapidly yielded GMMA displaying 12 natural serotypes and 16 novel serotypes expressing multiple epitopes combinations that do not occur in nature. Importantly, a candidate GMMA displaying a hybrid OAg elicited broadly cross-bactericidal antibodies against a large panel of S. flexneri serotypes.

13.
mBio ; 13(4): e0037422, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862803

RESUMO

Salmonella enterica serovar Typhimurium causes a devastating burden of invasive disease in sub-Saharan Africa with high levels of antimicrobial resistance. No licensed vaccine is available, but O-antigen-based candidates are in development, as the O-antigen moiety of lipopolysaccharides is the principal target of protective immunity. The vaccines under development are designed based on isolates with O-antigen O-acetylated at position C-2 of abequose, giving the O:5 antigen. Serotyping data on recent Salmonella Typhimurium clinical isolates from the Democratic Republic of the Congo (DRC), however, indicate increasing levels of isolates without O:5. The importance and distribution of this loss of O:5 antigen in the population as well as the genetic mechanism responsible for the loss and chemical characteristics of the O-antigen are poorly understood. In this study, we Illumina whole-genome sequenced 354 Salmonella Typhimurium isolates from the DRC, which were isolated between 2002 and 2017. We used genomics and phylogenetics combined with chemical approaches (1H nuclear magnetic resonance [NMR], high-performance anion-exchange chromatography with pulsed amperometric detection [HPAEC-PAD], high-performance liquid chromatography-PAD [HPLC-PAD], and HPLC-size exclusion chromatography [HPLC-SEC]) to characterize the O-antigen features within the bacterial population. We observed convergent evolution toward the loss of the O:5 epitope predominantly caused by recombination events in a single gene, the O-acetyltransferase gene oafA. In addition, we observe further O-antigen variations, including O-acetylation of the rhamnose residue, different levels of glucosylation, and the absence of O-antigen repeating units. Large recombination events underlying O-antigen variation were resolved using long-read MinION sequencing. Our study suggests evolutionary pressure toward O-antigen variants in a region where invasive disease by Salmonella Typhimurium is highly endemic. This needs to be taken into account when developing O-antigen-based vaccines, as it might impact the breadth of coverage in such regions. IMPORTANCE The bacterium Salmonella Typhimurium forms a devastating burden in sub-Saharan Africa by causing invasive bloodstream infections. Additionally, Salmonella Typhimurium presents high levels of antimicrobial resistance, jeopardizing treatment. No licensed vaccine is available, but candidates are in development, with lipopolysaccharides being the principal target of protective immunity. The vaccines under development are designed based on the O:5 antigen variant of bacterial lipopolysaccharides. Data on recent Salmonella Typhimurium clinical isolates from the Democratic Republic of the Congo (DRC), however, indicate increasing levels of isolates without this O:5 antigen. We studied this loss of O:5 antigen in the population at the genetic and chemical levels. We genome sequenced 354 isolates from the DRC and used advanced bioinformatics and chemical methods to characterize the lipopolysaccharide features within the bacterial population. Our results suggest evolutionary pressure toward O-antigen variants. This needs to be taken into account when developing vaccines, as it might impact vaccine coverage.


Assuntos
Anti-Infecciosos , Infecções por Salmonella , Salmonella enterica , Sepse , República Democrática do Congo/epidemiologia , Humanos , Lipopolissacarídeos , Antígenos O/genética , Infecções por Salmonella/microbiologia , Salmonella enterica/genética , Salmonella typhimurium , Sorogrupo
14.
Sci Rep ; 11(1): 906, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441861

RESUMO

GMMA are exosomes released from engineered Gram-negative bacteria resembling the composition of outer membranes. We applied the GMMA technology for the development of an O-Antigen (OAg) based vaccine against Shigella sonnei, the most epidemiologically relevant cause of shigellosis. S. sonnei OAg has been identified as a key antigen for protective immunity, and GMMA are able to induce anti-OAg-specific IgG response in animal models and healthy adults. The contribution of protein-specific antibodies induced upon vaccination with GMMA has never been fully elucidated. Anti-protein antibodies are induced in mice upon immunization with either OAg-negative and OAg-positive GMMA. Here we demonstrated that OAg chains shield the bacteria from anti-protein antibody binding and therefore anti-OAg antibodies were the main drivers of bactericidal activity against OAg-positive bacteria. Interestingly, antibodies that are not targeting the OAg are functional against OAg-negative bacteria. The immunodominant protein antigens were identified by proteomic analysis. Our study confirms a critical role of the OAg on the immune response induced by S. sonnei GMMA. However, little is known about OAg length and density regulation during infection and, therefore, protein exposure. Hence, the presence of protein antigens on S. sonnei GMMA represents an added value for GMMA vaccines compared to other OAg-based formulations.


Assuntos
Antígenos O/imunologia , Shigella sonnei/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Disenteria Bacilar/prevenção & controle , Disenteria Bacilar/terapia , Exossomos/imunologia , Feminino , Imunoglobulina G/metabolismo , Membranas/metabolismo , Camundongos , Antígenos O/química , Antígenos O/metabolismo , Proteômica/métodos , Shigella sonnei/patogenicidade , Vacinação/métodos , Vacinas/imunologia
15.
Vaccines (Basel) ; 8(2)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260067

RESUMO

Shigella infections are one of the top causes of diarrhea throughout the world, with Shigella flexneri being predominant in developing countries. Currently, no vaccines are widely available and increasing levels of multidrug-resistance make Shigella a high priority for vaccine development. The serotype-specific O-antigen moiety of Shigella lipopolysaccharide has been recognized as a key target for protective immunity, and many O-antigen based candidate vaccines are in development. Recently, the Generalized Modules for Membrane Antigens (GMMA) technology has been proposed as an alternative approach to traditional glycoconjugate vaccines for O-antigen delivery. Here, these two technologies are compared for a vaccine against S. flexneri serotype 6. Genetic strategies for GMMA production, conjugation approaches for linkage of the O-antigen to CRM197 carrier protein, and a large panel of analytical methods for full vaccine characterization have been put in place. In a head-to-head immunogenicity study in mice, GMMA induced higher anti-O-antigen IgG than glycoconjugate administered without Alhydrogel. When formulated on Alhydrogel, GMMA and glycoconjugate elicited similar levels of persistent anti-O-antigen IgG with bactericidal activity. Glycoconjugates are a well-established bacterial vaccine approach, but can be costly, particularly when multicomponent preparations are required. With similar immunogenicity and a simpler manufacturing process, GMMA are a promising strategy for the development of a vaccine against Shigella.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA