Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 89(17): 12748-12752, 2024 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-39189383

RESUMO

We describe the discovery and structure of an undecapeptide natural product from a marine sponge, termed halichondamide A, that is morphed into a fused bicyclic ring topology via two disulfide bonds. Molecular dynamics simulations allow us to posit that the installation of one disulfide bond biases the intermediate peptide conformation and predisposes the formation of the second disulfide bond. The natural product was found to be mildly cytotoxic against liver and breast cancer cell lines.


Assuntos
Simulação de Dinâmica Molecular , Poríferos , Poríferos/química , Animais , Humanos , Cisteína/química , Linhagem Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacologia , Peptídeos/química , Ensaios de Seleção de Medicamentos Antitumorais , Dobramento de Proteína , Produtos Biológicos/química
2.
J Biomol Struct Dyn ; : 1-19, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38109194

RESUMO

CD1 immunoreceptors are a non-classical major histocompatibility complex (MHC) that present antigens to T cells to elucidate immune responses against disease. The antigen repertoire of CD1 has been composed primarily of lipids until recently when CD1d-restricted T cells were shown to be activated by non-lipidic small molecules, such as phenyl pentamethyl dihydrobenzofuran sulfonate (PPBF) and related benzofuran sulfonates. To date structural insights into PPBF/CD1d interactions are lacking, so it is unknown whether small molecule and lipid antigens are presented and recognized through similar mechanisms. Furthermore, it is unknown whether CD1d can bind to and present a broader range of small molecule metabolites to T cells, acting out functions analogous to the MHC class I related protein MR1. Here, we perform in silico docking and molecular dynamics simulations to structurally characterize small molecule interactions with CD1d. PPBF was supported to be presented to T cell receptors through the CD1d F' pocket. Virtual screening of CD1d against more than 17,000 small molecules with diverse geometry and chemistry identified several novel scaffolds, including phytosterols, cholesterols, triterpenes, and carbazole alkaloids, that serve as candidate CD1d antigens. Protein-ligand interaction profiling revealed conserved residues in the CD1d F' pocket that similarly anchor small molecules and lipids. Our results suggest that CD1d could have the intrinsic ability to bind and present a broad range of small molecule metabolites to T cells to carry out its function beyond lipid antigen presentation.Communicated by Ramaswamy H. Sarma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA