Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 411, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760694

RESUMO

BACKGROUND: Wheat rusts are important biotic stresses, development of rust resistant cultivars through molecular approaches is both economical and sustainable. Extensive phenotyping of large mapping populations under diverse production conditions and high-density genotyping would be the ideal strategy to identify major genomic regions for rust resistance in wheat. The genome-wide association study (GWAS) population of 280 genotypes was genotyped using a 35 K Axiom single nucleotide polymorphism (SNP) array and phenotyped at eight, 10, and, 10 environments, respectively for stem/black rust (SR), stripe/yellow rust (YR), and leaf/brown rust (LR). RESULTS: Forty-one Bonferroni corrected marker-trait associations (MTAs) were identified, including 17 for SR and 24 for YR. Ten stable MTAs and their best combinations were also identified. For YR, AX-94990952 on 1A + AX-95203560 on 4A + AX-94723806 on 3D + AX-95172478 on 1A showed the best combination with an average co-efficient of infection (ACI) score of 1.36. Similarly, for SR, AX-94883961 on 7B + AX-94843704 on 1B and AX-94883961 on 7B + AX-94580041 on 3D + AX-94843704 on 1B showed the best combination with an ACI score of around 9.0. The genotype PBW827 have the best MTA combinations for both YR and SR resistance. In silico study identifies key prospective candidate genes that are located within MTA regions. Further, the expression analysis revealed that 18 transcripts were upregulated to the tune of more than 1.5 folds including 19.36 folds (TraesCS3D02G519600) and 7.23 folds (TraesCS2D02G038900) under stress conditions compared to the control conditions. Furthermore, highly expressed genes in silico under stress conditions were analyzed to find out the potential links to the rust phenotype, and all four genes were found to be associated with the rust phenotype. CONCLUSION: The identified novel MTAs, particularly stable and highly expressed MTAs are valuable for further validation and subsequent application in wheat rust resistance breeding. The genotypes with favorable MTA combinations can be used as prospective donors to develop elite cultivars with YR and SR resistance.


Assuntos
Basidiomycota , Resistência à Doença , Estudo de Associação Genômica Ampla , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Triticum , Triticum/genética , Triticum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Basidiomycota/fisiologia , Fenótipo , Genes de Plantas , Genótipo , Puccinia/fisiologia , Locos de Características Quantitativas
2.
Sci Rep ; 14(1): 8431, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600135

RESUMO

A panel comprising of 84 Turkish winter wheat landraces (LR) and 73 modern varieties (MV) was analyzed with genome wide association study (GWAS) to identify genes/genomic regions associated with increased yield under favorable and drought conditions. In addition, selective sweep analysis was conducted to detect signatures of selection in the winter wheat genome driving the differentiation between LR and MV, to gather an understanding of genomic regions linked to adaptation and yield improvement. The panel was genotyped with 25 K wheat SNP array and phenotyped for agronomic traits for two growing seasons (2018 and 2019) in Konya, Turkey. Year 2018 was treated as drought environment due to very low precipitation prior to heading whereas year 2019 was considered as a favorable season. GWAS conducted with SNPs and haplotype blocks using mixed linear model identified 18 genomic regions in the vicinities of known genes i.e., TaERF3-3A, TaERF3-3B, DEP1-5A, FRIZZY PANICLE-2D, TaSnRK23-1A, TaAGL6-A, TaARF12-2A, TaARF12-2B, WAPO1, TaSPL16-7D, TaTGW6-A1, KAT-2B, TaOGT1, TaSPL21-6B, TaSBEIb, trs1/WFZP-A, TaCwi-A1-2A and TaPIN1-7A associated with grain yield (GY) and yield related traits. Haplotype-based GWAS identified five haplotype blocks (H1A-42, H2A-71, H4A-48, H7B-123 and H7B-124), with the favorable haplotypes showing a yield increase of > 700 kg/ha in the drought season. SNP-based GWAS, detected only one larger effect genomic region on chromosome 7B, in common with haplotype-based GWAS. On an average, the percentage variation (PV) explained by haplotypes was 8.0% higher than PV explained by SNPs for all the investigated traits. Selective sweep analysis detected 39 signatures of selection between LR and MV of which 15 were within proximity of known functional genes controlling flowering (PRR-A1, PPR-D1, TaHd1-6B), GY and GY components (TaSus2-2B, TaGS2-B1, AG1-1A/WAG1-1A, DUO-A1, DUO-B1, AG2-3A/WAG2-3A, TaLAX1, TaSnRK210-4A, FBP, TaLAX1, TaPIL1 and AP3-1-7A/WPA3-7A) and 10 regions underlying various transcription factors and regulatory genes. The study outcomes contribute to utilization of LR in breeding winter wheat.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Estações do Ano , Locos de Características Quantitativas , Secas , Turquia , Melhoramento Vegetal , Fenótipo , Grão Comestível/genética , Genômica
3.
Plants (Basel) ; 12(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36616350

RESUMO

Genomic regions governing days to heading (DH), days to maturity (DM), plant height (PH), thousand-kernel weight (TKW), and test weight (TW) were investigated in a set of 190 RILs derived from a cross between a widely cultivated wheat-variety, Kachu (DPW-621-50), and a high-zinc variety, Zinc-Shakti. The RIL population was genotyped using 909 DArTseq markers and phenotyped in three environments. The constructed genetic map had a total genetic length of 4665 cM, with an average marker density of 5.13 cM. A total of thirty-seven novel quantitative trait loci (QTL), including twelve for PH, six for DH, five for DM, eight for TKW and six for TW were identified. A set of 20 stable QTLs associated with the expression of DH, DM, PH, TKW, and TW were identified in two or more environments. Three novel pleiotropic genomic-regions harboring co-localized QTLs governing two or more traits were also identified. In silico analysis revealed that the DArTseq markers were located on important putative candidate genes such as MLO-like protein, Phytochrome, Zinc finger and RING-type, Cytochrome P450 and pentatricopeptide repeat, involved in the regulation of pollen maturity, the photoperiodic modulation of flowering-time, abiotic-stress tolerance, grain-filling duration, thousand-kernel weight, seed morphology, and plant growth and development. The identified novel QTLs, particularly stable and co-localized QTLs, will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection (MAS).

4.
Plants (Basel) ; 12(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36771512

RESUMO

Plant omics, which includes genomics, transcriptomics, metabolomics and proteomics, has played a remarkable role in the discovery of new genes and biomolecules that can be deployed for crop improvement. In wheat, great insights have been gleaned from the utilization of diverse omics approaches for both qualitative and quantitative traits. Especially, a combination of omics approaches has led to significant advances in gene discovery and pathway investigations and in deciphering the essential components of stress responses and yields. Recently, a Wheat Omics database has been developed for wheat which could be used by scientists for further accelerating functional genomics studies. In this review, we have discussed various omics technologies and platforms that have been used in wheat to enhance the understanding of the stress biology of the crop and the molecular mechanisms underlying stress tolerance.

5.
Front Genet ; 14: 1265859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075682

RESUMO

The two recombinant inbred line (RIL) populations developed by crossing Almaly × Avocet S (206 RILs) and Almaly × Anza (162 RILs) were used to detect the novel genomic regions associated with adult plant resistance (APR) and seedling or all-stage resistance (ASR) to yellow rust (YR) and leaf rust (LR). The quantitative trait loci (QTLs) were detected through multi-year phenotypic evaluations (2018-2020) and using high-throughput DArTseq genotyping technology. RILs exhibited significant genetic variation with p < 0.001, and the coefficient of variation ranged from 9.79% to 47.99% for both LR and YR in all Environments and stages of evaluations. The heritability is quite high and ranged between 0.47 and 0.98. We identified nine stable QTLs for YR APR on chromosomes 1B, 2A, 2B, 3D, and 4D and four stable QTLs for LR APR on chromosomes 2B, 3B, 4A, and 5A. Furthermore, in silico analysis revealed that the key putative candidate genes such as cytochrome P450, protein kinase-like domain superfamily, zinc-binding ribosomal protein, SANT/Myb domain, WRKY transcription factor, nucleotide sugar transporter, and NAC domain superfamily were in the QTL regions and probably involved in the regulation of host response toward pathogen infection. The stable QTLs identified in this study are useful for developing rust-resistant varieties through marker-assisted selection (MAS).

6.
Sci Rep ; 12(1): 7037, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35487909

RESUMO

Malnutrition due to micronutrients and protein deficiency is recognized among the major global health issues. Genetic biofortification of wheat is a cost-effective and sustainable strategy to mitigate the global micronutrient and protein malnutrition. Genomic regions governing grain zinc concentration (GZnC), grain iron concentration (GFeC), grain protein content (GPC), test weight (TW), and thousand kernel weight (TKW) were investigated in a set of 184 diverse bread wheat genotypes through genome-wide association study (GWAS). The GWAS panel was genotyped using Breeders' 35 K Axiom Array and phenotyped in three different environments during 2019-2020. A total of 55 marker-trait associations (MTAs) were identified representing all three sub-genomes of wheat. The highest number of MTAs were identified for GPC (23), followed by TKW (15), TW (11), GFeC (4), and GZnC (2). Further, a stable SNP was identified for TKW, and also pleiotropic regions were identified for GPC and TKW. In silico analysis revealed important putative candidate genes underlying the identified genomic regions such as F-box-like domain superfamily, Zinc finger CCCH-type proteins, Serine-threonine/tyrosine-protein kinase, Histone deacetylase domain superfamily, and SANT/Myb domain superfamily proteins, etc. The identified novel MTAs will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection.


Assuntos
Desnutrição , Triticum , Grão Comestível/genética , Estudo de Associação Genômica Ampla , Desnutrição/metabolismo , Micronutrientes/genética , Micronutrientes/metabolismo , Triticum/genética
7.
Front Genet ; 13: 982589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092913

RESUMO

Genomic regions governing days to heading (DH), grain filling duration (GFD), grain number per spike (GNPS), grain weight per spike (GWPS), plant height (PH), and grain yield (GY) were investigated in a set of 280 diverse bread wheat genotypes. The genome-wide association studies (GWAS) panel was genotyped using a 35K Axiom Array and phenotyped in five environments. The GWAS analysis showed a total of 27 Bonferroni-corrected marker-trait associations (MTAs) on 15 chromosomes representing all three wheat subgenomes. The GFD showed the highest MTAs (8), followed by GWPS (7), GY (4), GNPS (3), PH (3), and DH (2). Furthermore, 20 MTAs were identified with more than 10% phenotypic variation. A total of five stable MTAs (AX-95024590, AX-94425015, AX-95210025 AX-94539354, and AX-94978133) were identified in more than one environment and associated with the expression of DH, GFD, GNPS, and GY. Similarly, two novel pleiotropic genomic regions with associated MTAs i.e. AX-94978133 (4D) and AX-94539354 (6A) harboring co-localized QTLs governing two or more traits were also identified. In silico analysis revealed that the SNPs were located on important putative candidate genes such as F-box-like domain superfamily, Lateral organ boundaries, LOB, Thioredoxin-like superfamily Glutathione S-transferase, RNA-binding domain superfamily, UDP-glycosyltransferase family, Serine/threonine-protein kinase, Expansin, Patatin, Exocyst complex component Exo70, DUF1618 domain, Protein kinase domain involved in the regulation of grain size, grain number, growth and development, grain filling duration, and abiotic stress tolerance. The identified novel MTAs will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection (MAS).

8.
Sci Rep ; 12(1): 12444, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858934

RESUMO

Genetic biofortification is recognized as a cost-effective and sustainable strategy to reduce micronutrient malnutrition. Genomic regions governing grain iron concentration (GFeC), grain zinc concentration (GZnC), and thousand kernel weight (TKW) were investigated in a set of 280 diverse bread wheat genotypes. The genome-wide association (GWAS) panel was genotyped using 35 K Axiom Array and phenotyped in five environments. The GWAS analysis showed a total of 17 Bonferroni-corrected marker-trait associations (MTAs) in nine chromosomes representing all the three wheat subgenomes. The TKW showed the highest MTAs (7), followed by GZnC (5) and GFeC (5). Furthermore, 14 MTAs were identified with more than 10% phenotypic variation. One stable MTA i.e. AX-95025823 was identified for TKW in both E4 and E5 environments along with pooled data, which is located at 68.9 Mb on 6A chromosome. In silico analysis revealed that the SNPs were located on important putative candidate genes such as Multi antimicrobial extrusion protein, F-box domain, Late embryogenesis abundant protein, LEA-18, Leucine-rich repeat domain superfamily, and C3H4 type zinc finger protein, involved in iron translocation, iron and zinc homeostasis, and grain size modifications. The identified novel MTAs will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection. The identified SNPs will be valuable in the rapid development of biofortified wheat varieties to ameliorate the malnutrition problems.


Assuntos
Desnutrição , Triticum , Grão Comestível/metabolismo , Estudo de Associação Genômica Ampla , Ferro/metabolismo , Desnutrição/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Triticum/genética , Zinco/metabolismo
9.
Front Genet ; 12: 652653, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194467

RESUMO

The development of nutritionally enhanced wheat (Triticum aestivum L.) with higher levels of grain iron (Fe) and zinc (Zn) offers a sustainable solution to micronutrient deficiency among resource-poor wheat consumers. One hundred and ninety recombinant inbred lines (RILs) from 'Kachu' × 'Zinc-Shakti' cross were phenotyped for grain Fe and Zn concentrations and phenological and agronomically important traits at Ciudad Obregon, Mexico in the 2017-2018, 2018-2019, and 2019-2020 growing seasons and Diversity Arrays Technology (DArT) molecular marker data were used to determine genomic regions controlling grain micronutrients and agronomic traits. We identified seven new pleiotropic quantitative trait loci (QTL) for grain Zn and Fe on chromosomes 1B, 1D, 2B, 6A, and 7D. The stable pleiotropic QTL identified have expanded the diversity of QTL that could be used in breeding for wheat biofortification. Nine RILs with the best combination of pleiotropic QTL for Zn and Fe have been identified to be used in future crossing programs and to be screened in elite yield trials before releasing as biofortified varieties. In silico analysis revealed several candidate genes underlying QTL, including those belonging to the families of the transporters and kinases known to transport small peptides and minerals (thus assisting mineral uptake) and catalyzing phosphorylation processes, respectively.

10.
Front Nutr ; 8: 669444, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211996

RESUMO

Micronutrient and protein malnutrition is recognized among the major global health issues. Genetic biofortification is a cost-effective and sustainable strategy to tackle malnutrition. Genomic regions governing grain iron concentration (GFeC), grain zinc concentration (GZnC), grain protein content (GPC), and thousand kernel weight (TKW) were investigated in a set of 163 recombinant inbred lines (RILs) derived from a cross between cultivated wheat variety WH542 and a synthetic derivative (Triticum dicoccon PI94624/Aegilops tauschii [409]//BCN). The RIL population was genotyped using 100 simple-sequence repeat (SSR) and 736 single nucleotide polymorphism (SNP) markers and phenotyped in six environments. The constructed genetic map had a total genetic length of 7,057 cM. A total of 21 novel quantitative trait loci (QTL) were identified in 13 chromosomes representing all three genomes of wheat. The trait-wise highest number of QTL was identified for GPC (10 QTL), followed by GZnC (six QTL), GFeC (three QTL), and TKW (two QTL). Four novel stable QTL (QGFe.iari-7D.1, QGFe.iari-7D.2, QGPC.iari-7D.2, and QTkw.iari-7D) were identified in two or more environments. Two novel pleiotropic genomic regions falling between Xgwm350-AX-94958668 and Xwmc550-Xgwm350 in chromosome 7D harboring co-localized QTL governing two or more traits were also identified. The identified novel QTL, particularly stable and co-localized QTL, will be validated to estimate their effects on different genetic backgrounds for subsequent use in marker-assisted selection (MAS). Best QTL combinations were identified by the estimation of additive effects of the stable QTL for GFeC, GZnC, and GPC. A total of 11 RILs (eight for GZnC and three for GPC) having favorable QTL combinations identified in this study can be used as potential donors to develop bread wheat varieties with enhanced micronutrients and protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA