Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 214(Pt 1): 113796, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35810811

RESUMO

In this study, indium-gallium-zinc oxide (IGZO)-decorated ZnO thin films were investigated through the change in IGZO deposition time for the detection of NO2 gas. The atomic layer deposited ZnO on interdigitated Au electrode alumina substrates are decorated with IGZO by controlling the deposition time. The IGZO (ZnO:Ga2O3:In2O3 = 1:1:1 mol. %) polycrystalline target was used for deposition and effect of deposition time was investigated. The sensor responses (Rgas/Rair) of 20.6, 39.3, and 57.1 and 45.2, 102.5, and 243.5 were obtained at 150 °C, 200 °C, and 250 °C and 25-ppm NO2 concentration for ZnO (Z1) and IGZO-decorated ZnO (Z3) films, respectively. The sensor response (Rgas/Rair) increased from ∼27 to 243.5 by decorating the ZnO film with IGZO for a 60-s sputtering time. The sensor recovery and response times of the IGZO-decorated ZnO/ZnO sensor increased, and the sensor selectivity to different gases was also evaluated.


Assuntos
Gálio , Óxido de Zinco , Gases , Índio , Dióxido de Nitrogênio , Compostos Orgânicos , Zinco
2.
Biotechnol Appl Biochem ; 61(6): 668-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24329970

RESUMO

The effect of silica nanoparticles and conventional silica sources on the changes in microbial biomass and silica availability to pure soil and maize rhizosphere was studied. Nanosilica (20-40 nm) was synthesized from rice husk and comprehensively characterized. The efficiency of nanosilica was evaluated in terms of its effects on beneficial microbial population such as phosphate solubilizers, nitrogen fixers, silicate solubilizers, microbial biomass carbon and nitrogen content, and silica content in comparison with other silica sources such as microsilica, sodium silicate, and silicic acid. Nanosilica significantly (P < 0.05) enhanced microbial populations, total biomass content (C = 1508 µg g(-1) and N = 178 µg g(-1) ), and silica content (14.75 mg mL(-1) ). Although microsilica sources enhanced factors associated with soil fertility, their use by maize roots and silicification in soil was found to be less. The results show that nanosilica plays a vital role in influencing soil nutrient content and microbial biota and, hence, may promote the growth of maize crop.


Assuntos
Microbiota/efeitos dos fármacos , Rizosfera , Dióxido de Silício/farmacologia , Zea mays/efeitos dos fármacos , Nanopartículas/química , Dióxido de Silício/química , Zea mays/microbiologia
3.
ACS Omega ; 9(9): 10110-10118, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463307

RESUMO

Herein, we have synthesized pristine and g-C3N4-assisted Ce2(WO4)3 via a facile hydrothermal method. The structure was confirmed with the standard JCPDS card. g-C3N4 encapsulated the crystal and reduced the size. The Raman spectra revealed the presence of Ce-O, W-O stretching and bending vibrations. Electron hole transfer facilitation and controllable recombination were altered by g-C3N4 heterojunction with cerium tungstate. Ce2(WO4)3 possessed a larger band gap. As g-C3N4 was assisted, the band gap was reduced which facilitates Ce2(WO4)3 to utilize more visible light. The prepared photocatalysts were used to investigate the model pollutant removal with visible light. The pure Janus Green B sample showed lesser efficiency, as it does not show self-degradation under light. As Ce2(WO4)3 was added, it slightly improved the efficiency as it possesses lower electron hole transfer and high recombination. Thus, g-C3N4 was composited with Ce2(WO4)3 to make heterojunctions which will enhance the photo-excited electron and hole transfer and decrease e-/h+ recombination. The rate constant values of the photocatalysts were calculated, and the system follows the first-order pseudo-kinetic model. Ciprofloxacin, a well-known antibiotic, was also used to degrade under visible light. The pure sample showed lower efficiency, and the antibiotic was reduced well with the addition of prepared photocatalysts. The modification of Ce2(WO4)3 with the optimum-level g-C3N4 facilitated electron hole charge transfer, and numerous adsorbed dye molecules on the photocatalyst surface made 0.1 g g-C3N4-Ce2(WO4)3 a plausible photocatalyst for the water remediation process.

4.
ACS Omega ; 8(13): 11700-11708, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033835

RESUMO

In the modern civilized world, energy scarcity and associated environmental pollution are the center of focus in the search for reliable energy storage and harvesting devices. The need to develop cheaper and more competent binder-free electrodes for high-performance supercapacitors has attracted considerable research attention. In this study, two different procedures are followed to enhance the growth of carbon nanotubes (CNT-E and CNT-NF) directly coated on a Ni-foam substrate by a well-functioning chemical vapor deposition (CVD) method. Thus, directly grown optimized CNT electrodes are used as electrodes for electrochemical devices. Furthermore, solid-state symmetric supercapacitors are fabricated using CNT-NF//CNT-NF, and fruitful results are obtained with maximum specific capacitance (250.51 F/g), energy density (68.19 Wh/kg), and power density (2799.77 W/kg) at 1 A/g current density. The device exhibited good cyclic stability, with 92.42% capacitive retention and 99.68% Coulombic efficiency at 10 000 cycles, indicating the suitability of the electrodes for practical applications. This study emphasizes the importance of studying the direct growth of binder-free CNT electrodes to understand the actual behavior of electrodes and the proper storage mechanism.

5.
ACS Omega ; 8(4): 3745-3754, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36742998

RESUMO

In this work, pristine, 0.02, 0.04, and 0.06 M neodymium (Nd)-doped barium tungstate nanostructures were synthesized via a simple co-precipitation method for the water oxidation process. The obtained X-ray diffraction high-intensity peak at a 2θ value of 26.4° corresponding to the (112) lattice plane confirmed the formation of a tetragonal structure of BaWO4. Moreover, the BaWO4 morphology was examined by scanning electron microscopy, which showed the existence of nanospindles. An energy-dispersive X-ray spectrum confirmed the subsistence of the produced materials, for example, barium (Ba), tungsten (W), oxide (O), and neodymium (Nd), with weight percentages of 28.58, 46.63, 16.64, and 8.16%, respectively. The 0.04 M Nd-doped BaWO4 product was explored to attain a high surface area of 18.18 m2/g, a pore volume of 0.079 cm3/g, and a pore diameter of 2.215 nm. Compared to the other prepared electrodes, the 0.04 M Nd-doped BaWO4 product exhibited low overpotential values of 330 mV and 450 mV to deliver current densities of 10 mA/cm2 and 50 mA/cm2, respectively. In addition, the optimized electrode achieved a small Tafel slope value of 158 mV dec-1 and followed the Volmer-Heyrovsky mechanism. Moreover, the electrical conductivity of BaWO4 was tuned due to the addition of a rare-earth metal dopant, and it exhibited the charge-transfer resistance and solution resistance values of 0.98 and 1.01 Ω, respectively. The prepared electrocatalyst was further studied by using cyclic voltammetry, and it exhibited a high double-layer capacitance value of 29.3 mF/cm2 and high electrochemically active surface areas of 1.465 cm2. The electrochemical performance was greatly improved depending on the concentration of the doping agent, and it was well consistent with the obtained results. The best electrocatalyst was subjected to a chronoamperometry test, which exhibited excellent stability even after 20 h. Hence, this work suggests that alkaline metal tungstates have a cost-effective, efficient, and promising electrocatalyst, and it is a new approach for the water oxidation process.

6.
ACS Omega ; 8(50): 47427-47439, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144044

RESUMO

Photocatalysts based on semiconducting chalcogenides due to their adaptable physio-chemical characteristics are attracting attention. In this work, Bi-doped PbS (henceforth PbS:Bi) was prepared using a straightforward chemical precipitation approach, and the influence of γ-irradiation on PbS's photocatalytic ability was investigated. Synthesized samples were confirmed structurally and chemically. Pb(1-x)BixS (x = 0, 0.005, 0.01, 0.02) samples that were exposed to gamma rays showed fine-tuning of the optical bandgap for better photocatalytic action beneath visible light. The photocatalytic degradation rate of the irradiated Pb0.995Bi0.005S sample was found to be 1.16 times above that of pure PbS. This is due to the occupancy of Bi3+ ions at surface lattice sites as a result of their lower concentration in PbS, which effectively increases interface electron transport and the annealing impact of gamma irradiation. Scavenger tests show that holes are active species responsible for deterioration of the methylene blue. The irradiated PbS:Bi demonstrated high stability after being used repeatedly for photocatalytic degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA