Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 17(2): e1008101, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33617527

RESUMO

Proteases are an important class of enzymes, whose activity is central to many physiologic and pathologic processes. Detailed knowledge of protease specificity is key to understanding their function. Although many methods have been developed to profile specificities of proteases, few have the diversity and quantitative grasp necessary to fully define specificity of a protease, both in terms of substrate numbers and their catalytic efficiencies. We have developed a concept of "selectome"; the set of substrate amino acid sequences that uniquely represent the specificity of a protease. We applied it to two closely related members of the Matrixin family-MMP-2 and MMP-9 by using substrate phage display coupled with Next Generation Sequencing and information theory-based data analysis. We have also derived a quantitative measure of substrate specificity, which accounts for both the number of substrates and their relative catalytic efficiencies. Using these advances greatly facilitates elucidation of substrate selectivity between closely related members of a protease family. The study also provides insight into the degree to which the catalytic cleft defines substrate recognition, thus providing basis for overcoming two of the major challenges in the field of proteolysis: 1) development of highly selective activity probes for studying proteases with overlapping specificities, and 2) distinguishing targeted proteolysis from bystander proteolytic events.


Assuntos
Modelos Biológicos , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Domínio Catalítico/genética , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Teoria da Informação , Metaloproteinase 2 da Matriz/química , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/química , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Modelos Moleculares , Peptídeo Hidrolases/classificação , Biblioteca de Peptídeos , Dobramento de Proteína , Proteólise , Proteômica/métodos , Proteômica/estatística & dados numéricos , Especificidade por Substrato/genética , Especificidade por Substrato/fisiologia
2.
Proc Natl Acad Sci U S A ; 111(40): E4148-55, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25246591

RESUMO

Genomic sequencing and structural genomics produced a vast amount of sequence and structural data, creating an opportunity for structure-function analysis in silico [Radivojac P, et al. (2013) Nat Methods 10(3):221-227]. Unfortunately, only a few large experimental datasets exist to serve as benchmarks for function-related predictions. Furthermore, currently there are no reliable means to predict the extent of functional similarity among proteins. Here, we quantify structure-function relationships among three phylogenetic branches of the matrix metalloproteinase (MMP) family by comparing their cleavage efficiencies toward an extended set of phage peptide substrates that were selected from ∼ 64 million peptide sequences (i.e., a large unbiased representation of substrate space). The observed second-order rate constants [k(obs)] across the substrate space provide a distance measure of functional similarity among the MMPs. These functional distances directly correlate with MMP phylogenetic distance. There is also a remarkable and near-perfect correlation between the MMP substrate preference and sequence identity of 50-57 discontinuous residues surrounding the catalytic groove. We conclude that these residues represent the specificity-determining positions (SDPs) that allowed for the expansion of MMP proteolytic function during evolution. A transmutation of only a few selected SDPs proximal to the bound substrate peptide, and contributing the most to selectivity among the MMPs, is sufficient to enact a global change in the substrate preference of one MMP to that of another, indicating the potential for the rational and focused redesign of cleavage specificity in MMPs.


Assuntos
Domínio Catalítico , Metaloproteinases da Matriz/química , Metaloproteinases da Matriz/metabolismo , Peptídeos/metabolismo , Algoritmos , Sequência de Aminoácidos , Sítios de Ligação/genética , Biocatálise , Humanos , Cinética , Metaloproteinases da Matriz/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Filogenia , Proteólise , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
3.
Biochemistry ; 50(48): 10499-507, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22050556

RESUMO

Understanding the active site preferences of an enzyme is critical to the design of effective inhibitors and to gaining insights into its mechanisms of action on substrates. While the subsite specificity of thrombin is understood, it is not clear whether the enzyme prefers individual amino acids at each subsite in isolation or prefers to cleave combinations of amino acids as a motif. To investigate whether preferred peptide motifs for cleavage could be identified for thrombin, we exposed a phage-displayed peptide library to thrombin. The resulting preferentially cleaved substrates were analyzed using the technique of association rule discovery. The results revealed that thrombin selected for amino acid motifs in cleavage sites. The contribution of these hypothetical motifs to substrate cleavage efficiency was further investigated using the B1 IgG-binding domain of streptococcal protein G as a model substrate. Introduction of a P(2)-P(1)' LRS thrombin cleavage sequence within a major loop of the protein led to cleavage of the protein by thrombin, with the cleavage efficiency increasing with the length of the loop. Introduction of further P(3)-P(1) and P(1)-P(1)'-P(3)' amino acid motifs into the loop region yielded greater cleavage efficiencies, suggesting that the susceptibility of a protein substrate to cleavage by thrombin is influenced by these motifs, perhaps because of cooperative effects between subsites closest to the scissile peptide bond.


Assuntos
Modelos Químicos , Trombina/química , Trombina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófago M13/química , Bacteriófago M13/genética , Hidrólise , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Biblioteca de Peptídeos , Engenharia de Proteínas/métodos , Distribuição Aleatória , Reprodutibilidade dos Testes , Streptococcus , Especificidade por Substrato/genética , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
J Proteome Res ; 10(8): 3642-51, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21682278

RESUMO

Limited or regulatory proteolysis plays a critical role in many important biological pathways like blood coagulation, cell proliferation, and apoptosis. A better understanding of mechanisms that control this process is required for discovering new proteolytic events and for developing inhibitors with potential therapeutic value. Two features that determine the susceptibility of peptide bonds to proteolysis are the sequence in the vicinity of the scissile bond and the structural context in which the bond is displayed. In this study, we assessed statistical significance and predictive power of individual structural descriptors and combination thereof for the identification of cleavage sites. The analysis was performed on a data set of >200 proteolytic events documented in CutDB for a variety of mammalian regulatory proteases and their physiological substrates with known 3D structures. The results confirmed the significance and provided a ranking within three main categories of structural features: exposure > flexibility > local interactions. Among secondary structure elements, the largest frequency of proteolytic cleavage was confirmed for loops and lower but significant frequency for helices. Limited proteolysis has lower albeit appreciable frequency of occurrence in certain types of ß-strands, which is in contrast with some previous reports. Descriptors deduced directly from the amino acid sequence displayed only marginal predictive capabilities. Homology-based structural models showed a predictive performance comparable to protein substrates with experimentally established structures. Overall, this study provided a foundation for accurate automated prediction of segments of protein structure susceptible to proteolytic processing and, potentially, other post-translational modifications.


Assuntos
Proteínas/química , Proteólise , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína
5.
J Biol Chem ; 285(36): 27726-36, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20605791

RESUMO

The functional activity of invasion-promoting membrane type 1 matrix metalloproteinase (MT1-MMP) is elevated in cancer. This elevated activity promotes cancer cell migration, invasion, and metastasis. MT1-MMP is synthesized as a zymogen, the latency of which is maintained by its prodomain. Excision by furin was considered sufficient for the prodomain release and MT1-MMP activation. We determined, however, that the full-length intact prodomain released by furin alone is a potent autoinhibitor of MT1-MMP. Additional MMP cleavages within the prodomain sequence are required to release the MT1-MMP enzyme activity. Using mutagenesis of the prodomain sequence and mass spectrometry analysis of the prodomain fragments, we demonstrated that the intradomain cleavage of the PGD/L(50) site initiates the MT1-MMP activation, whereas the (108)RRKR(111)/Y(112) cleavage by furin completes the removal and the degradation of the autoinhibitory prodomain and the liberation of the functional activity of the emerging enzyme of MT1-MMP.


Assuntos
Furina/metabolismo , Metaloproteinase 14 da Matriz/química , Metaloproteinase 14 da Matriz/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Ativação Enzimática , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Humanos , Metaloproteinase 14 da Matriz/genética , Inibidores de Metaloproteinases de Matriz , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Estrutura Terciária de Proteína
6.
Biochem J ; 427(3): 369-76, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20156198

RESUMO

There is a need to develop inhibitors of mosquito-borne flaviviruses, including WNV (West Nile virus). In the present paper, we describe a novel and efficient recombinant-antibody technology that led us to the isolation of inhibitory high-affinity human antibodies to the active-site region of a viral proteinase. As a proof-of-principal, we have successfully used this technology and the synthetic naive human combinatorial antibody library HuCAL GOLD(R) to isolate selective and potent function-blocking active-site-targeting antibodies to the two-component WNV NS (non-structural protein) 2B-NS3 serine proteinase, the only proteinase encoded by the flaviviral genome. First, we used the wild-type enzyme in antibody screens. Next, the positive antibody clones were counter-screened using an NS2B-NS3 mutant with a single mutation of the catalytically essential active-site histidine residue. The specificity of the antibodies to the active site was confirmed by substrate-cleavage reactions and also by using proteinase mutants with additional single amino-acid substitutions in the active-site region. The selected WNV antibodies did not recognize the structurally similar viral proteinases from Dengue virus type 2 and hepatitis C virus, and human serine proteinases. Because of their high selectivity and affinity, the identified human antibodies are attractive reagents for both further mutagenesis and structure-based optimization and, in addition, for studies of NS2B-NS3 activity. Conceptually, it is likely that the generic technology reported in the present paper will be useful for the generation of active-site-specific antibody probes for multiple enzymes.


Assuntos
Anticorpos Antivirais/isolamento & purificação , Serina Proteases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Vírus do Nilo Ocidental/enzimologia , Anticorpos Antivirais/genética , Anticorpos Antivirais/metabolismo , Western Blotting , Domínio Catalítico/genética , Domínio Catalítico/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína , Serina Proteases/química , Serina Proteases/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Vírus do Nilo Ocidental/genética
7.
Nucleic Acids Res ; 37(Database issue): D611-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18842634

RESUMO

The Proteolysis MAP (PMAP, http://www.proteolysis.org) is a user-friendly website intended to aid the scientific community in reasoning about proteolytic networks and pathways. PMAP is comprised of five databases, linked together in one environment. The foundation databases, ProteaseDB and SubstrateDB, are driven by an automated annotation pipeline that generates dynamic 'Molecule Pages', rich in molecular information. PMAP also contains two community annotated databases focused on function; CutDB has information on more than 5000 proteolytic events, and ProfileDB is dedicated to information of the substrate recognition specificity of proteases. Together, the content within these four databases will ultimately feed PathwayDB, which will be comprised of known pathways whose function can be dynamically modeled in a rule-based manner, and hypothetical pathways suggested by semi-automated culling of the literature. A Protease Toolkit is also available for the analysis of proteases and proteolysis. Here, we describe how the databases of PMAP can be used to foster understanding of proteolytic pathways, and equally as significant, to reason about proteolysis.


Assuntos
Bases de Dados de Proteínas , Peptídeo Hidrolases/química , Humanos , Redes e Vias Metabólicas , Peptídeo Hidrolases/metabolismo , Proteínas/química , Proteínas/metabolismo , Especificidade por Substrato , Integração de Sistemas
8.
J Biol Chem ; 284(44): 30615-26, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19726693

RESUMO

Multiple sclerosis (MS) is a disease of the central nervous system with autoimmune etiology. Susceptibility to MS is linked to viral and bacterial infections. Matrix metalloproteinases (MMPs) play a significant role in the fragmentation of myelin basic protein (MBP) and demyelination. The splice variants of the single MBP gene are expressed in the oligodendrocytes of the central nervous system (classic MBP) and in the immune cells (Golli-MBPs). Our data suggest that persistent inflammation caused by environmental risk factors is a step to MS. We have discovered biochemical evidence suggesting the presence of the inflammatory proteolytic pathway leading to MS. The pathway involves the self-activated furin and PC2 proprotein convertases and membrane type-6 MMP (MT6-MMP/MMP-25) that is activated by furin/PC2. These events are followed by MMP-25 proteolysis of the Golli-MBP isoforms in the immune system cells and stimulation of the specific autoimmune T cell clones. It is likely that the passage of these autoimmune T cell clones through the disrupted blood-brain barrier to the brain and the recognition of neuronal, classic MBP causes inflammation leading to the further up-regulation of the activity of the multiple individual MMPs, the massive cleavage of MBP in the brain, demyelination, and MS. In addition to the cleavage of Golli-MBPs, MMP-25 proteolysis readily inactivates crystallin alphaB that is a suppressor of MS. These data suggest that MMP-25 plays an important role in MS pathology and that MMP-25, especially because of its restricted cell/tissue expression pattern and cell surface/lipid raft localization, is a promising drug target in MS.


Assuntos
Células Apresentadoras de Antígenos/patologia , Encéfalo/imunologia , Inflamação/enzimologia , Metaloproteinases da Matriz Associadas à Membrana/metabolismo , Esclerose Múltipla/etiologia , Pró-Proteína Convertases/metabolismo , Células Apresentadoras de Antígenos/metabolismo , Encéfalo/enzimologia , Encéfalo/patologia , Proteínas Ligadas por GPI , Humanos , Inflamação/etiologia , Metaloproteinases da Matriz Associadas à Membrana/genética , Microdomínios da Membrana , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Proteína Básica da Mielina/metabolismo , Transdução de Sinais , Distribuição Tecidual , Regulação para Cima
9.
Curr Biol ; 16(18): 1796-806, 2006 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-16979556

RESUMO

BACKGROUND: Integrin receptors, composed of transmembrane alpha and beta subunits, are essential for the development and functioning of multicellular animals. Agonist stimulation leads cells to regulate integrin affinity ("activation"), thus controlling cell adhesion and migration, controlling extracellular-matrix assembly, and contributing to angiogenesis, tumor cell metastasis, inflammation, the immune response, and hemostasis. A final step in integrin activation is the binding of talin, a cytoskeletal protein, to integrin beta cytoplasmic domains. Many different signaling molecules that regulate integrin affinity have been described, but a pathway that connects agonist stimulation to talin binding and activation has not been mapped. RESULTS: We used forward, reverse, and synthetic genetics to engineer and order an integrin activation pathway in cells expressing a prototype activatable integrin, platelet alphaIIbbeta3. Phorbol myristate acetate (PMA) activated alphaIIbbeta3 only after the increased expression of both recombinant protein kinase Calpha (PKCalpha) and talin to levels approximating those in platelets. Inhibition of Rap1 GTPase reduced alphaIIbbeta3 activation, whereas activated Rap1A(G12V) bypassed the requirement for PKC, establishing that Rap1 is downstream of PKC. Talin binding to integrins mediates Rap1-induced activation because Rap1A(G12V) failed to activate alphaIIbbeta3 in cells expressing integrin binding-defective talin (W359A). Rap1 activated integrins by forming an integrin-associated complex containing talin in combination with the Rap effector, RIAM. Furthermore, siRNA-mediated knockdown of RIAM blocked integrin activation. CONCLUSIONS: We have, for the first time, ordered a pathway from agonist stimulation to integrin activation and established the Rap1-induced formation of an "integrin activation complex," containing RIAM and talin, that binds to and activates the integrin.


Assuntos
Complexo Glicoproteico GPIIb-IIIa de Plaquetas/agonistas , Transdução de Sinais/fisiologia , Animais , Sítios de Ligação , Plaquetas/metabolismo , Células CHO , Cricetinae , Cricetulus , Proteínas de Fluorescência Verde/análise , Humanos , Modelos Biológicos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Proteína Quinase C/metabolismo , Proteínas Recombinantes de Fusão/análise , Transdução de Sinais/efeitos dos fármacos , Talina/metabolismo , Talina/fisiologia , Acetato de Tetradecanoilforbol/farmacologia , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/fisiologia
10.
Bioorg Med Chem Lett ; 19(19): 5773-7, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19703770

RESUMO

West Nile Virus (WNV) is a potentially deadly mosquito-borne flavivirus which has spread rapidly throughout the world. Currently there is no effective vaccine against flaviviral infections. We previously reported the identification of pyrazole ester derivatives as allosteric inhibitors of WNV NS2B-NS3 proteinase. These compounds degrade rapidly in pH 8 buffer with a half life of 1-2h. We now report the design, synthesis and in vitro evaluation of pyrazole derivatives that are inhibitors of WNV NS2B-NS3 proteinase with greatly improved stability in the assay medium.


Assuntos
Antivirais/química , Pirazóis/química , Inibidores de Serina Proteinase/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Vírus do Nilo Ocidental/efeitos dos fármacos , Regulação Alostérica , Antivirais/síntese química , Antivirais/farmacologia , Desenho de Fármacos , Meia-Vida , Concentração de Íons de Hidrogênio , Hidrólise , Pirazóis/síntese química , Pirazóis/farmacologia , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/farmacologia , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo , Febre do Nilo Ocidental/tratamento farmacológico
11.
Methods Mol Biol ; 539: 93-114, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19377968

RESUMO

The interplay between a protease and its substrates is controlled at many different levels, including coexpression, colocalization, binding driven by ancillary contacts, and the presence of natural inhibitors. Here we focus on the most basic parameter that guides substrate recognition by a protease, the recognition specificity at the catalytic cleft. An understanding of this substrate specificity can be used to predict the putative substrates of a protease, to design protease activated imaging agents, and to initiate the design of active site inhibitors. Our group has characterized protease specificities of several matrix metalloproteinases using substrate phage display. Recently, we have adapted this method to a semiautomated platform that includes several high-throughput steps. The semiautomated platform allows one to obtain an order of magnitude more data, thus permitting precise comparisons among related proteases to define their functional distinctions.


Assuntos
Peptídeo Hidrolases/metabolismo , Biblioteca de Peptídeos , Domínio Catalítico , Peptídeo Hidrolases/química , Especificidade por Substrato
12.
Biochim Biophys Acta Proteins Proteom ; 1867(11): 140253, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31330204

RESUMO

Bioinformatics-based prediction of protease substrates can help to elucidate regulatory proteolytic pathways that control a broad range of biological processes such as apoptosis and blood coagulation. The majority of published predictive models are position weight matrices (PWM) reflecting specificity of proteases toward target sequence. These models are typically derived from experimental data on positions of hydrolyzed peptide bonds and show a reasonable predictive power. New emerging techniques that not only register the cleavage position but also measure catalytic efficiency of proteolysis are expected to improve the quality of predictions or at least substantially reduce the number of tested substrates required for confident predictions. The main goal of this study was to develop new prediction models based on such data and to estimate the performance of the constructed models. We used data on catalytic efficiency of proteolysis measured for eight major human matrix metalloproteinases to construct predictive models of protease specificity using a variety of regression analysis techniques. The obtained results suggest that efficiency-based (quantitative) models show a comparable performance with conventional PWM-based algorithms, while less training data are required. The derived list of candidate cleavage sites in human secreted proteins may serve as a starting point for experimental analysis.


Assuntos
Algoritmos , Biologia Computacional , Peptídeo Hidrolases , Proteólise , Humanos
13.
Biochem J ; 401(3): 743-52, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17067286

RESUMO

Regulated proteolysis of the polyprotein precursor by the NS2B-NS3 protease is required for the propagation of infectious virions. Unless the structural and functional parameters of NS2B-NS3 are precisely determined, an understanding of its functional role and the design of flaviviral inhibitors will be exceedingly difficult. Our objectives were to define the substrate recognition pattern of the NS2B-NS3 protease of West Nile and Dengue virises (WNV and DV respectively). To accomplish our goals, we used an efficient, 96-well plate format, method for the synthesis of 9-mer peptide substrates with the general P4-P3-P2-P1-P1'-P2'-P3'-P4'-Gly structure. The N-terminus and the constant C-terminal Gly of the peptides were tagged with a fluorescent tag and with a biotin tag respectively. The synthesis was followed by the proteolytic cleavage of the synthesized, tagged peptides. Because of the strict requirement for the presence of basic amino acid residues at the P1 and the P2 substrate positions, the analysis of approx. 300 peptide sequences was sufficient for an adequate representation of the cleavage preferences of the WNV and DV proteinases. Our results disclosed the strict substrate specificity of the WNV protease for which the (K/R)(K/R)R/GG amino acid motifs was optimal. The DV protease was less selective and it tolerated well the presence of a number of amino acid residue types at either the P1' or the P2' site, as long as the other position was occupied by a glycine residue. We believe that our data represent a valuable biochemical resource and a solid foundation to support the design of selective substrates and synthetic inhibitors of flaviviral proteinases.


Assuntos
Vírus da Dengue/enzimologia , Proteínas não Estruturais Virais/metabolismo , Vírus do Nilo Ocidental/enzimologia , Sítios de Ligação , Mutação , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Especificidade por Substrato , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
14.
Assay Drug Dev Technol ; 5(6): 737-50, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18181690

RESUMO

West Nile virus (WNV), a member of the Flavividae family, is a mosquito-borne, emerging pathogen. In addition to WNV, the family includes dengue, yellow fever, and Japanese encephalitis viruses, which affect millions of individuals worldwide. Because countermeasures are currently unavailable, flaviviral therapy is urgently required. The flaviviral two-component nonstructural NS2B-NS3 proteinase (protease [pro]) is essential for viral life cycle and, consequently, is a promising drug target. We report here the results of the miniaturization of an NS2B-NS3pro activity assay, followed by high-throughput screening of the National Institutes of Health's 65,000 compound library and identification of novel, uncompetitive inhibitors of WNV NS2B-NS3pro that appear to interfere with the productive interactions of the NS2B cofactor with the NS3pro domain. We anticipate that following structure optimization, the identified probes could form the foundation for the design of novel and specific therapeutics for WNV infection. We also provide the structural basis for additional species-selective allosteric inhibitors of flaviviruses.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Inibidores de Proteases/síntese química , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Vírus do Nilo Ocidental/enzimologia , Cromatografia Líquida , Interpretação Estatística de Dados , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Indicadores e Reagentes , Ligantes , Espectrometria de Massas , Modelos Moleculares , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/isolamento & purificação , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/efeitos dos fármacos
15.
Biochem J ; 393(Pt 2): 503-11, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16229682

RESUMO

Mosquito-borne WNV (West Nile virus) is an emerging global threat. The NS3 proteinase, which is essential for the proteolytic processing of the viral polyprotein precursor, is a promising drug target. We have isolated and biochemically characterized the recombinant, highly active NS3 proteinase. We have determined that the NS3 proteinase functions in a manner that is distantly similar to furin in cleaving the peptide and protein substrates. We determined that aprotinin and D-arginine-based 9-12-mer peptides are potent inhibitors of WNV NS3 with K(i) values of 26 nM and 1 nM respectively. Consistent with the essential role of NS3 activity in the life cycle of WNV and with the sensitivity of NS3 activity to the D-arginine-based peptides, we showed that nona-D-Arg-NH2 reduced WNV infection in primary neurons. We have also shown that myelin basic protein, a deficiency of which is linked to neurological abnormalities of the brain, is sensitive to NS3 proteolysis in vitro and therefore this protein represents a convenient test substrate for the studies of NS3. A three-dimensional model of WNV NS3 that we created may provide a structural guidance and a rationale for the subsequent design of fine-tuned inhibitors. Overall, our findings represent a foundation for in-depth mechanistic and structural studies as well as for the design of novel and efficient inhibitors of WNV NS3.


Assuntos
Arginina/análise , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Vírus do Nilo Ocidental/enzimologia , Sequência de Aminoácidos , Animais , Arginina/química , Células Cultivadas , Sequência Conservada , Furina/química , Furina/metabolismo , Camundongos , Dados de Sequência Molecular , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Peptídeos/química , Peptídeos/farmacologia , RNA Helicases/antagonistas & inibidores , RNA Helicases/genética , RNA Helicases/isolamento & purificação , RNA Helicases/metabolismo , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/genética , Serina Endopeptidases/isolamento & purificação , Serina Endopeptidases/metabolismo , Serpinas/farmacologia , Especificidade por Substrato , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/isolamento & purificação , Vírus do Nilo Ocidental/genética
16.
Oncoscience ; 2(8): 681-3, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26425657

RESUMO

Recent studies highlight the importance of glutamine metabolism in metabolic reprogramming, which underlies cancer cell addiction to glutamine. Examples for the dependence on glutamine metabolism are seen across different tumor types as during different phases of cancer development, progression and response to therapy. In this perspective, we assess the possibility of targeting glutamine metabolism as a therapeutic modality for cancer.

17.
PLoS One ; 10(5): e0127877, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25996941

RESUMO

CleavPredict (http://cleavpredict.sanfordburnham.org) is a Web server for substrate cleavage prediction for matrix metalloproteinases (MMPs). It is intended as a computational platform aiding the scientific community in reasoning about proteolytic events. CleavPredict offers in silico prediction of cleavage sites specific for 11 human MMPs. The prediction method employs the MMP specific position weight matrices (PWMs) derived from statistical analysis of high-throughput phage display experimental results. To augment the substrate cleavage prediction process, CleavPredict provides information about the structural features of potential cleavage sites that influence proteolysis. These include: secondary structure, disordered regions, transmembrane domains, and solvent accessibility. The server also provides information about subcellular location, co-localization, and co-expression of proteinase and potential substrates, along with experimentally determined positions of single nucleotide polymorphism (SNP), and posttranslational modification (PTM) sites in substrates. All this information will provide the user with perspectives in reasoning about proteolytic events. CleavPredict is freely accessible, and there is no login required.


Assuntos
Metaloproteinases da Matriz/metabolismo , Software , Navegador , Algoritmos , Bases de Dados Genéticas , Proteólise , Curva ROC , Reprodutibilidade dos Testes
18.
Oncotarget ; 6(10): 7379-89, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25749035

RESUMO

Glutamine dependence is a prominent feature of cancer metabolism, and here we show that melanoma cells, irrespective of their oncogenic background, depend on glutamine for growth. A quantitative audit of how carbon from glutamine is used showed that TCA-cycle-derived glutamate is, in most melanoma cells, the major glutamine-derived cataplerotic output and product of glutaminolysis. In the absence of glutamine, TCA cycle metabolites were liable to depletion through aminotransferase-mediated α-ketoglutarate-to-glutamate conversion and glutamate secretion. Aspartate was an essential cataplerotic output, as melanoma cells demonstrated a limited capacity to salvage external aspartate. Also, the absence of asparagine increased the glutamine requirement, pointing to vulnerability in the aspartate-asparagine biosynthetic pathway within melanoma metabolism. In contrast to melanoma cells, melanocytes could grow in the absence of glutamine. Melanocytes use more glutamine for protein synthesis rather than secreting it as glutamate and are less prone to loss of glutamate and TCA cycle metabolites when starved of glutamine.


Assuntos
Asparagina/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Melanoma/metabolismo , Processos de Crescimento Celular/fisiologia , Humanos , Melanoma/patologia
19.
Cancer Cell ; 27(3): 354-69, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25759021

RESUMO

Many tumor cells are fueled by altered metabolism and increased glutamine (Gln) dependence. We identify regulation of the L-glutamine carrier proteins SLC1A5 and SLC38A2 (SLC1A5/38A2) by the ubiquitin ligase RNF5. Paclitaxel-induced ER stress to breast cancer (BCa) cells promotes RNF5 association, ubiquitination, and degradation of SLC1A5/38A2. This decreases Gln uptake, levels of TCA cycle components, mTOR signaling, and proliferation while increasing autophagy and cell death. Rnf5-deficient MMTV-PyMT mammary tumors were less differentiated and showed elevated SLC1A5 expression. Whereas RNF5 depletion in MDA-MB-231 cells promoted tumorigenesis and abolished paclitaxel responsiveness, SLC1A5/38A2 knockdown elicited opposing effects. Inverse RNF5(hi)/SLC1A5/38A2(lo) expression was associated with positive prognosis in BCa. Thus, RNF5 control of Gln uptake underlies BCa response to chemotherapies.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema A de Transporte de Aminoácidos/metabolismo , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Proteínas de Ligação a DNA/fisiologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Paclitaxel/farmacologia , Ubiquitina-Proteína Ligases/fisiologia , Sistema A de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/genética , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Ciclo do Ácido Cítrico/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Antígenos de Histocompatibilidade Menor , Paclitaxel/uso terapêutico , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
20.
Pigment Cell Melanoma Res ; 25(6): 732-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22846158

RESUMO

In this perspective, we revise the historic notion that cancer is a disease of mitochondria. We summarize recent findings on the function and rewiring of central carbon metabolism in melanoma. Metabolic profiling studies using stable isotope tracers show that glycolysis is decoupled from the tricarboxylic acid (TCA) cycle. This decoupling is not 'dysfunction' but rather an alternate wiring required by tumor cells to remain metabolically versatile. In large part, this requirement is met by glutamine feeding the TCA cycle as an alternative source of carbon. Glutamine is also used in non-conventional ways, like traveling in reverse through the TCA flux to feed fatty acid biosynthesis. Biosynthetic networks linked with non-essential amino acids alanine, serine, arginine, and proline are also significantly impacted by the use of glutamine as an alternate carbon source.


Assuntos
Glutamina/metabolismo , Glicólise , Melanoma/metabolismo , Mitocôndrias/metabolismo , Ciclo do Ácido Cítrico , Humanos , Neoplasias Cutâneas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA