Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1863(1): 211-219, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664836

RESUMO

Karyopherin alpha 7 (KPNA7) belongs to a family of nuclear import proteins that recognize and bind nuclear localization signals (NLSs) in proteins to be transported to the nucleus. Previously we found that KPNA7 is overexpressed in a subset of pancreatic cancer cell lines and acts as a critical regulator of growth in these cells. This characteristic of KPNA7 is likely to be mediated by its cargo proteins that are still mainly unknown. Here, we used protein affinity chromatography in Hs700T and MIA PaCa-2 pancreatic cancer cell lines and identified 377 putative KPNA7 cargo proteins, most of which were known or predicted to localize to the nucleus. The interaction was confirmed for two of the candidates, MVP and ZNF414, using co-immunoprecipitation, and their transport to the nucleus was hindered by siRNA based KPNA7 silencing. Most importantly, silencing of MVP and ZNF414 resulted in marked reduction in Hs700T cell growth. In conclusion, these data uncover two previously unknown human KPNA7 cargo proteins with distinct roles as novel regulators of pancreatic cancer cell growth, thus deepening our understanding on the contribution of nuclear transport in cancer pathogenesis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neoplasias Pancreáticas/metabolismo , Fatores de Transcrição/metabolismo , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , alfa Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pancreáticas/patologia , Mapas de Interação de Proteínas
2.
Int J Cancer ; 127(6): 1363-72, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20073067

RESUMO

miRNAs have proven to be key regulators of gene expression and are differentially expressed in various diseases, including cancer. Our aim was to identify epigenetically dysregulated genes in prostate cancer. We performed miRNA expression profiling after relieving epigenetic modifications in 6 prostate cancer cell lines and nonmalignant prostate epithelial cells. Thirty-eight miRNAs showed increased expression in any prostate cancer cell line after 5-aza-2'-deoxycytidine (5azadC) and trichostatin A (TSA) treatments. Six of these also had decreased expression in clinical prostate cancer samples compared to benign prostatic hyperplasia. Among these, miR-193b was methylated in 22Rv1 cell line at a CpG island approximately 1 kb upstream of the miRNA locus. Expressing miR-193b in 22Rv1 cells using pre-miR-193b oligonucleotides caused a significant growth reduction (p < 0.001) resulting from a decrease of cells in S-phase of the cell cycle (p < 0.01). In addition, the anchorage independent growth was partially inhibited in transiently miR-193b-expressing 22Rv1 cells (p < 0.01). Altogether, our data suggest that miR-193b is an epigenetically silenced putative tumor suppressor in prostate cancer.


Assuntos
Epigênese Genética , Genes Supressores de Tumor , MicroRNAs/genética , Neoplasias da Próstata/genética , Sequência de Bases , Ciclo Celular , Proliferação de Células , Metilação de DNA , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , Masculino , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Homologia de Sequência de Aminoácidos
3.
Int J Cancer ; 124(1): 95-102, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18844214

RESUMO

Amplification of the long arm of chromosome 8 is one of the most recurrent findings in prostate cancer and it is associated with poor prognosis. Several minimal regions of amplification suggest multiple target genes which are yet to be identified. We have previously shown that TCEB1, EIF3S3, KIAA0196 and RAD21 are amplified and overexpressed in prostate cancer and they are located in the 8q area. In this study, we examined the functional effects of these genes to prostate cancer cell phenotype. We overexpressed and inhibited the genes by lentivirus mediated overexpression and RNA interference, respectively. shRNA mediated TCEB1 silencing decreased significantly cellular invasion of PC-3 and DU145 cells through Matrigel. TCEB1 silencing reduced the anchorage-independent growth of PC-3 cells. Similar effects were not seen with any other genes. When overexpressed in NIH 3T3 cells, TCEB1 and EIF3S3 increased the growth rate of the cells. Transcriptional profiling of TCEB1 silenced PC-3 cells revealed decrease of genes involved in invasion and metastasis. Finally, we also confirmed here the overexpression of TCEB1 in hormone-refractory prostate tumors. This study indicates that TCEB1 promotes invasion of prostate cancer cells, is involved in development of hormone-refractory prostate cancer and is thereby a strong candidate to be one of the target genes for the 8q gain.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica , Neoplasias da Próstata/metabolismo , Fatores de Transcrição/fisiologia , Animais , Linhagem Celular Tumoral , Elonguina , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Masculino , Camundongos , Células NIH 3T3 , Interferência de RNA
4.
Int J Cancer ; 123(7): 1601-9, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18649357

RESUMO

Lack of good models has complicated investigations on the mechanisms of prostate cancer. By far, the most commonly used transgenic mouse model of prostate cancer is TRAMP, which, however, has not been fully characterized for genetic and epigenetic aberrations. Here, we screened TRAMP-derived C2 cell line for the alterations using different microarray approaches, and compared it to human prostate cancer. TRAMP-C2 had relatively few genomic copy number alterations according to array comparative genomic hybridization (aCGH). However, the gene copy number and expression were significantly correlated (p < 0.001). Screening genes for promoter hypermethylation using demethylation treatment with 5-aza-2'-deoxycytidine and subsequent expression profiling indicated 43 putatively epigenetically silenced genes. Further studies revealed that clusterin is methylated in the TRAMP-C2 cell line, as well as in the human prostate cancer cell line LNCaP. Its expression was found to be significantly reduced (p < 0.01) in untreated and hormone-refractory human prostate carcinomas. Together with known function of clusterin, the data suggest an epigenetic component in the regulation of clusterin in prostate cancer.


Assuntos
Adenocarcinoma/genética , Clusterina/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Linhagem Celular Tumoral , Aberrações Cromossômicas , Metilação de DNA , Inativação Gênica , Humanos , Masculino , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Cancer Med ; 4(9): 1417-25, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26129688

RESUMO

Micro-RNAs (miRNA) are important regulators of gene expression and often differentially expressed in cancer and other diseases. We have previously shown that miR-193b is hypermethylated in prostate cancer (PC) and suppresses cell growth. It has been suggested that miR-193b targets cyclin D1 in several malignancies. Here, our aim was to determine if miR-193b targets cyclin D1 in prostate cancer. Our data show that miR-193b is commonly methylated in PC samples compared to benign prostate hyperplasia. We found reduced miR-193b expression (P < 0.05) in stage pT3 tumors compared to pT2 tumors in a cohort of prostatectomy specimens. In 22Rv1 PC cells with low endogenous miR-193b expression, the overexpression of miR-193b reduced CCND1 mRNA levels and cyclin D1 protein levels. In addition, the exogenous expression of miR-193b decreased the phosphorylation level of RB, a target of the cyclin D1-CDK4/6 pathway. Moreover, according to a reporter assay, miR-193b targeted the 3'UTR of CCND1 in PC cells and the CCND1 activity was rescued by expressing CCND1 lacking its 3'UTR. Immunohistochemical analysis of cyclin D1 showed that castration-resistant prostate cancers have significantly (P = 0.0237) higher expression of cyclin D1 compared to hormone-naïve cases. Furthermore, the PC cell lines 22Rv1 and VCaP, which express low levels of miR-193b and high levels of CCND1, showed significant growth retardation when treated with a CDK4/6 inhibitor. In contrast, the inhibitor had no effect on the growth of PC-3 and DU145 cells with high miR-193b and low CCND1 expression. Taken together, our data demonstrate that miR-193b targets cyclin D1 in prostate cancer.


Assuntos
Ciclina D1/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Interferência de RNA , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Metilação de DNA , Humanos , Masculino , Gradação de Tumores , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Neoplasias da Próstata/cirurgia , RNA Mensageiro/genética
6.
Anticancer Res ; 33(1): 45-52, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23267127

RESUMO

BACKGROUND: Actin-related protein 2/3 (ARP2/3) complex is an actin nucleator responsible for actin cytoskeleton branching which is essential for efficient cell migration. MATERIALS AND METHODS: The expression of the seven ARP2/3 complex subunits was assessed in pancreatic cancer cell lines and in normal pancreatic samples by quantitative RT-PCR. siRNA-mediated silencing was used to study the contribution of each ARP2/3 complex member to pancreatic cancer cell migration. RESULTS: ARPC3 and ARPC4 were the most highly expressed complex members, while ARPC1B and ARPC2 were expressed at low levels. Silencing of the ARP2/3 complex subunits typically resulted in reduced cell migration capacity. In particular, silencing of ARPC4 significantly reduced cell migration in all studied cell lines, with a major impact on Hs700T and HPAFII migration (50% and 68% decrease, p<0.001). CONCLUSION: We offer comprehensive expression data on the ARP2/3 complex members for pancreatic cancer and normal pancreas. In addition, we show cell line-specific differences in ARP2/3 complex subunit dependency on cell migratory potential, and suggest ARPC4 to be one of the key members of the ARP2/3 complex in pancreatic cancer.


Assuntos
Citoesqueleto de Actina , Complexo 2-3 de Proteínas Relacionadas à Actina , Actinas/genética , Actinas/metabolismo , Proteínas do Citoesqueleto , Neoplasias Pancreáticas , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , RNA Interferente Pequeno
7.
Int J Cancer ; 117(5): 738-45, 2005 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15981206

RESUMO

Inactivation of tumor suppressor genes through deletion, mutation and epigenetic silencing has been shown to occur in cancer. In our study, we combined DNA demethylation and histone deacetylation inhibition treatments with suppression subtraction hybridization (SSH) and cDNA microarrays to identify potentially epigenetically downregulated genes in PC-3 prostate cancer cell line. We found 11 genes whose expression was upregulated after relieving epigenetic regulation. Expression of 3 genes [dual-specificity phosphatase 1 (DUSP1), serum/glucocorticoid regulated kinase (SGK) and spermidine/spermine N1-acetyltransferase (SAT)] was subsequently studied in clinical sample material using real-time quantitative RT-PCR and immunohistochemistry. The DUSP1 and SGK mRNA expression was lower in hormone-refractory prostate carcinomas compared to benign prostate hyperplasia (BPH) or untreated prostate carcinomas. BPH, normal prostate and high-grade prostate intraepithelial neoplasia (PIN) expressed high levels of DUSP1 and SGK proteins. Ninety-two percent and 48% of the prostate carcinomas showed almost complete lack of DUSP1 and SGK proteins, respectively, indicating common downregulation of these genes. The genomic bisulphite sequencing did not reveal dense hypermethylation in the promoter regions of either DUSP1 or SGK. In conclusion, the data suggest that downregulation of DUSP1 and SGK is an early event and could be important in the tumorigenesis of prostate cancer.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Regulação para Baixo , Proteínas Imediatamente Precoces/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Neoplasias da Próstata/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Sequência de Bases , Proteínas de Ciclo Celular/genética , Metilação de DNA , Primers do DNA , DNA Complementar , Fosfatase 1 de Especificidade Dupla , Humanos , Proteínas Imediatamente Precoces/genética , Imuno-Histoquímica , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Fosfoproteínas Fosfatases/genética , Proteína Fosfatase 1 , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Fosfatases/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA