RESUMO
Heart failure (HF) is one of the main causes of morbidity and mortality in patients with chronic kidney disease (CKD). Decreased glomerular filtration rate is associated with diffuse deposition of fibrotic tissue in the myocardial interstitium [i.e. myocardial interstitial fibrosis (MIF)] and loss of cardiac function. MIF results from cardiac fibroblast-mediated alterations in the turnover of fibrillary collagen that lead to the excessive synthesis and deposition of collagen fibres. The accumulation of stiff fibrotic tissue alters the mechanical properties of the myocardium, thus contributing to the development of HF. Accumulating evidence suggests that several mechanisms are operative along the different stages of CKD that may converge to alter fibroblasts and collagen turnover in the heart. Therefore, focusing on MIF might enable the identification of fibrosis-related biomarkers and targets that could potentially lead to a new strategy for the prevention and treatment of HF in patients with CKD. This article summarizes current knowledge on the mechanisms and detrimental consequences of MIF in CKD and discusses the validity and usefulness of available biomarkers to recognize the clinical-pathological variability of MIF and track its clinical evolution in CKD patients. Finally, the currently available and potential future therapeutic strategies aimed at personalizing prevention and reversal of MIF in CKD patients, especially those with HF, will be also discussed.
Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Insuficiência Renal Crônica , Biomarcadores , Cardiomiopatias/patologia , Colágeno , Feminino , Fibrose , Insuficiência Cardíaca/complicações , Humanos , Masculino , Miocárdio/patologia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/patologiaRESUMO
OBJECTIVE: Peripheral arterial disease (PAD) is the most prevalent cardiovascular (CV) condition globally. Despite the high CV risk of PAD patients, no reliable predictors of adverse clinical evolution are yet available. In this regard, previous transcriptomic analyses revealed increased expression of calprotectin (S100A8/A9) and lipocalin-2 (LCN2) in circulating extracellular vesicles (EVs) of patients with PAD. The aim of this study was to determine the prognostic value of LCN2 and calprotectin for CV risk assessment in PAD. METHODS: LCN2 and the S100A9 subunit of calprotectin were examined in human femoral plaques by immunohistochemistry and qPCR. LCN2 and calprotectin were determined by ELISA in PAD (CHN cohort, n = 331, Fontaine II-IV, serum), and PAD diagnosed by population based screening (VIVA trial, n = 413, the majority Fontaine 0-I, plasma). Patients were followed up for a mean of four years, recording the primary outcomes; CV death or amputation in the CHN cohort and CV death or major lower limb events (MALE) in the VIVA population. Secondary outcomes were all cause death or amputation, and all cause death or MALE, respectively. RESULTS: LCN2 and S100A9 were detected in human plaques in regions rich in inflammatory cells. LCN2 and calprotectin levels were 70% and 64% lower in plasma than in serum. In the CHN cohort, high serum levels of LCN2 and calprotectin increased the risk of primary and secondary outcomes 5.6 fold (p < .001) and 1.8 fold (p = .034), respectively, after covariable adjustment. Similarly, elevated plasma levels of LCN2 and calprotectin increased by three fold the risk of primary and secondary outcomes (p < .001) in the VIVA cohort. Moreover, addition of the combined variable to basal models, considering clinically relevant risk factors, improved reclassification for the primary outcome in both cohorts (p ≤ .024). CONCLUSION: Combined assessment of the inflammatory biomarkers LCN2 and calprotectin might be useful for risk stratification in advanced and early PAD.
Assuntos
Complexo Antígeno L1 Leucocitário , Doença Arterial Periférica , Biomarcadores , Humanos , Lipocalina-2 , Doença Arterial Periférica/cirurgia , PrognósticoRESUMO
BACKGROUND: Since cardiovascular magnetic resonance (CMR) imaging allows comprehensive quantification of both myocardial function and structure we aimed to assess myocardial remodeling processes in patients with severe aortic stenosis (AS) undergoing transcatheter aortic valve replacement (TAVR). METHODS: CMR imaging was performed in 40 patients with severe AS before and 1 year after TAVR. Image analyses comprised assessments of myocardial volumes, CMR-feature-tracking based atrial and ventricular strain, myocardial T1 mapping, extracellular volume fraction-based calculation of left ventricular (LV) cellular and matrix volumes, as well as ischemic and non-ischemic late gadolinium enhancement analyses. Moreover, biomarkers including NT-proBNP as well as functional and clinical status were documented. RESULTS: Myocardial function improved 1 year after TAVR: LV ejection fraction (57.9 ± 16.9% to 65.4 ± 14.5%, p = 0.002); LV global longitudinal (- 21.4 ± 8.0% to -25.0 ± 6.4%, p < 0.001) and circumferential strain (- 36.9 ± 14.3% to - 42.6 ± 11.8%, p = 0.001); left atrial reservoir (13.3 ± 6.3% to 17.8 ± 6.7%, p = 0.001), conduit (5.5 ± 3.2% to 8.4 ± 4.6%, p = 0.001) and boosterpump strain (8.2 ± 4.6% to 9.9 ± 4.2%, p = 0.027). This was paralleled by regression of total myocardial volume (90.3 ± 21.0 ml/m2 to 73.5 ± 17.0 ml/m2, p < 0.001) including cellular (55.2 ± 13.2 ml/m2 to 45.3 ± 11.1 ml/m2, p < 0.001) and matrix volumes (20.7 ± 6.1 ml/m2 to 18.8 ± 5.3 ml/m2, p = 0.036). These changes were paralleled by recovery from heart failure (decrease of NYHA class: p < 0.001; declining NT-proBNP levels: 2456 ± 3002 ng/L to 988 ± 1222 ng/L, p = 0.001). CONCLUSION: CMR imaging enables comprehensive detection of myocardial remodeling in patients undergoing TAVR. Regression of LV matrix volume as a surrogate for reversible diffuse myocardial fibrosis is accompanied by increase of myocardial function and recovery from heart failure. Further data are required to define the value of these parameters as therapeutic targets for optimized management of TAVR patients. Trial registration DRKS, DRKS00024479. Registered 10 December 2021-Retrospectively registered, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00024479.
Assuntos
Estenose da Valva Aórtica , Insuficiência Cardíaca , Substituição da Valva Aórtica Transcateter , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/patologia , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/patologia , Estenose da Valva Aórtica/cirurgia , Meios de Contraste , Gadolínio , Humanos , Espectroscopia de Ressonância Magnética , Valor Preditivo dos Testes , Estudos Prospectivos , Volume Sistólico , Substituição da Valva Aórtica Transcateter/efeitos adversos , Resultado do Tratamento , Função Ventricular Esquerda , Remodelação VentricularRESUMO
BACKGROUND: Myocardial fibrosis is a hallmark of cardiac remodeling and functionally involved in heart failure development, a leading cause of deaths worldwide. Clinically, no therapeutic strategy is available that specifically attenuates maladaptive responses of cardiac fibroblasts, the effector cells of fibrosis in the heart. Therefore, our aim was to develop novel antifibrotic therapeutics based on naturally derived substance library screens for the treatment of cardiac fibrosis. METHODS: Antifibrotic drug candidates were identified by functional screening of 480 chemically diverse natural compounds in primary human cardiac fibroblasts, subsequent validation, and mechanistic in vitro and in vivo studies. Hits were analyzed for dose-dependent inhibition of proliferation of human cardiac fibroblasts, modulation of apoptosis, and extracellular matrix expression. In vitro findings were confirmed in vivo with an angiotensin II-mediated murine model of cardiac fibrosis in both preventive and therapeutic settings, as well as in the Dahl salt-sensitive rat model. To investigate the mechanism underlying the antifibrotic potential of the lead compounds, treatment-dependent changes in the noncoding RNAome in primary human cardiac fibroblasts were analyzed by RNA deep sequencing. RESULTS: High-throughput natural compound library screening identified 15 substances with antiproliferative effects in human cardiac fibroblasts. Using multiple in vitro fibrosis assays and stringent selection algorithms, we identified the steroid bufalin (from Chinese toad venom) and the alkaloid lycorine (from Amaryllidaceae species) to be effective antifibrotic molecules both in vitro and in vivo, leading to improvement in diastolic function in 2 hypertension-dependent rodent models of cardiac fibrosis. Administration at effective doses did not change plasma damage markers or the morphology of kidney and liver, providing the first toxicological safety data. Using next-generation sequencing, we identified the conserved microRNA 671-5p and downstream the antifibrotic selenoprotein P1 as common effectors of the antifibrotic compounds. CONCLUSIONS: We identified the molecules bufalin and lycorine as drug candidates for therapeutic applications in cardiac fibrosis and diastolic dysfunction.
Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Bufanolídeos/farmacologia , Cardiomiopatias/prevenção & controle , Fármacos Cardiovasculares/farmacologia , Fibroblastos/efeitos dos fármacos , Fenantridinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Diástole , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Ensaios de Triagem em Larga Escala , Humanos , Hipertensão/complicações , Hipertensão/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Ratos Endogâmicos Dahl , Selenoproteína P/genética , Selenoproteína P/metabolismo , Função Ventricular Esquerda/efeitos dos fármacosRESUMO
AIMS/HYPOTHESIS: Evidence that glucose-dependent insulinotropic peptide (GIP) and/or the GIP receptor (GIPR) are involved in cardiovascular biology is emerging. We hypothesised that GIP has untoward effects on cardiovascular biology, in contrast to glucagon-like peptide 1 (GLP-1), and therefore investigated the effects of GIP and GLP-1 concentrations on cardiovascular disease (CVD) and mortality risk. METHODS: GIP concentrations were successfully measured during OGTTs in two independent populations (Malmö Diet Cancer-Cardiovascular Cohort [MDC-CC] and Prevalence, Prediction and Prevention of Diabetes in Botnia [PPP-Botnia]) in a total of 8044 subjects. GLP-1 (n = 3625) was measured in MDC-CC. The incidence of CVD and mortality was assessed via national/regional registers or questionnaires. Further, a two-sample Mendelian randomisation (2SMR) analysis between the GIP pathway and outcomes (coronary artery disease [CAD] and myocardial infarction) was carried out using a GIP-associated genetic variant, rs1800437, as instrumental variable. An additional reverse 2SMR was performed with CAD as exposure variable and GIP as outcome variable, with the instrumental variables constructed from 114 known genetic risk variants for CAD. RESULTS: In meta-analyses, higher fasting levels of GIP were associated with risk of higher total mortality (HR[95% CI] = 1.22 [1.11, 1.35]; p = 4.5 × 10-5) and death from CVD (HR[95% CI] 1.30 [1.11, 1.52]; p = 0.001). In accordance, 2SMR analysis revealed that increasing GIP concentrations were associated with CAD and myocardial infarction, and an additional reverse 2SMR revealed no significant effect of CAD on GIP levels, thus confirming a possible effect solely of GIP on CAD. CONCLUSIONS/INTERPRETATION: In two prospective, community-based studies, elevated levels of GIP were associated with greater risk of all-cause and cardiovascular mortality within 5-9 years of follow-up, whereas GLP-1 levels were not associated with excess risk. Further studies are warranted to determine the cardiovascular effects of GIP per se.
Assuntos
Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/mortalidade , Polipeptídeo Inibidor Gástrico/metabolismo , Glucose/metabolismo , Adulto , Idoso , Feminino , Genótipo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Receptores dos Hormônios Gastrointestinais/metabolismoRESUMO
INTRODUCTION: Ultrahigh-density-voltage mapping (uHDV M) is a new tool that can add new insights into the pathophysiology of atrial fibrillation (AF). The aim of this study was to evaluate the performance of uHDV M in predicting postablation AF recurrence (AFR). METHODS AND RESULTS: We included 98 consecutive patients undergoing pulmonary vein isolation for AF (40.8% persistent) using an uHDV M system and followed for 1 year. The left atrium (LA) mean voltage (Vm ) and the Vslope (slope of the voltage histogram calculated by linear interpolation, with the relative frequency on the vertical axis and the bipolar potential on the horizontal axis) were calculated from 12 567 ± 5486 points per map. Patients with AFR (N = 29) had lower Vm and higher Vslope as compared with patients without AFR (N = 69). Receiver operating characteristic curves identified Vm as the strongest predictor of AFR, with a higher incidence of AFR in patients with Vm 0.758 mV (57.6%) or lower than patients with Vm higher than 0.758 mV (15.4%; P < .0001). Among patients with Vm higher than 0.758 mV, patients with Vslope 0.637 or higher exhibited higher (P = .043) AFR incidence (31.3%) than patients with Vslope lower than 0.637 (10.2%). This classification showed incremental predictive value over relevant covariables. Vm values were lower and Vslope values were higher in patients that progressed from paroxysmal to persistent AF. Patients with Vslope 0.637 or higher had a 14.2% incidence of postablation atypical atrial flutter, whereas patients with Vslope lower than 0.637 did not present this outcome. CONCLUSIONS: The risk of AFR, atrial flutter, and progression from paroxysmal to persistent AF can be detected by quantitative analysis of LA uHDV M identifying diverse patterns of atrial substrate alterations.
Assuntos
Potenciais de Ação , Fibrilação Atrial/cirurgia , Flutter Atrial/etiologia , Ablação por Cateter/efeitos adversos , Técnicas Eletrofisiológicas Cardíacas , Átrios do Coração/cirurgia , Frequência Cardíaca , Veias Pulmonares/cirurgia , Idoso , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/fisiopatologia , Flutter Atrial/diagnóstico , Flutter Atrial/fisiopatologia , Função do Átrio Esquerdo , Remodelamento Atrial , Progressão da Doença , Feminino , Fibrose , Átrios do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Veias Pulmonares/fisiopatologia , Recidiva , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do TratamentoRESUMO
Regulatory T (Treg) cells offer new therapeutic options for controlling undesired systemic and local immune responses. The aim of the current study was to determine the impact of therapeutic Treg administration on systemic and cardiac inflammation and remodeling in coxsackievirus B3 (CVB3) -induced myocarditis. Therefore, syngeneic Treg cells were applied intravenously in CVB3-infected mice 3 d after infection. Compared with CVB3 + PBS mice, CVB3 + Treg mice exhibited lower left ventricular (LV) chemokine expression, accompanied by reduced cardiac presence of proinflammatory Ly6ChighCCR2highCx3Cr1low monocytes and higher retention of proinflammatory Ly6CmidCCR2highCx3Cr1low monocytes in the spleen. In addition, splenic myelopoiesis was reduced in CVB3 + Treg compared with CVB3 + PBS mice. Coculture of Treg cells with splenocytes isolated from mice 3 d post-CVB3 infection further demonstrated the ability of Treg cells to modulate monocyte differentiation in favor of the anti-inflammatory Ly6ClowCCR2lowCx3Cr1high subset. Treg-mediated immunomodulation was paralleled by lower collagen 1 protein expression and decreased levels of soluble and insoluble collagen in LV of CVB3 + Treg compared with CVB3 + PBS mice. In agreement with these findings, LV systolic and diastolic function was improved in CVB3 + Treg mice compared with CVB3 + PBS mice. In summary, adoptive Treg transfer in the inflammatory phase of viral-induced myocarditis protects the heart against inflammatory damage and fibrosis via modulation of monocyte subsets.-Pappritz, K., Savvatis, K., Miteva, K., Kerim, B., Dong, F., Fechner, H., Müller, I., Brandt, C., Lopez, B., González, A., Ravassa, S., Klingel, K., Diez, J., Reinke, P., Volk, H.-D., Van Linthout, S., Tschöpe, C. Immunomodulation by adoptive regulatory T-cell transfer improves Coxsackievirus B3-induced myocarditis.
RESUMO
Aims: To investigate myocardial fibrosis (MF) in a large series of severe aortic stenosis (AS) patients using invasive biopsy and non-invasive imaging. Methods and results: One hundred thirty-three patients with severe, symptomatic AS accepted for surgical aortic valve replacement underwent cardiovascular magnetic resonance (CMR) with late gadolinium enhancement (LGE) and extracellular volume fraction (ECV) quantification. Intra-operative left ventricular (LV) biopsies were performed by needle or scalpel, yielding tissue with (n = 53) and without endocardium (n = 80), and compared with 10 controls. Myocardial fibrosis occurred in three patterns: (i) thickened endocardium with a fibrotic layer; (ii) microscopic scars, with a subendomyocardial predominance; and (iii) diffuse interstitial fibrosis. Collagen volume fraction (CVF) was elevated (P < 0.001) compared with controls, and higher (P < 0.001) in endocardium-containing samples with a decreasing CVF gradient from the subendocardium (P = 0.001). Late gadolinium enhancement correlated with CVF (P < 0.001) but not ECV. Both LGE and ECV correlated independently (P < 0.001) with N-terminal pro-brain natriuretic peptide and high-sensitivity-troponin T. High ECV was also associated with worse LV remodelling, left ventricular ejection fraction and functional capacity. Combining high ECV and LGE better identified patients with more adverse LV remodelling, blood biomarkers and histological parameters, and worse functional capacity than each parameter alone. Conclusion: Myocardial fibrosis in severe AS is complex, but three main patterns exist: endocardial fibrosis, microscars (mainly in the subendomyocardium), and diffuse interstitial fibrosis. Neither histological CVF nor the CMR parameters ECV and LGE capture fibrosis in its totality. A combined, multi-parametric approach with ECV and LGE allows best stratification of AS patients according to the response of the myocardial collagen matrix.
Assuntos
Estenose da Valva Aórtica/cirurgia , Cardiomiopatias/patologia , Ventrículos do Coração/cirurgia , Idoso , Idoso de 80 Anos ou mais , Estenose da Valva Aórtica/complicações , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/metabolismo , Fator Natriurético Atrial/metabolismo , Biópsia , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/metabolismo , Feminino , Gadolínio/metabolismo , Implante de Prótese de Valva Cardíaca/métodos , Humanos , Imagem Cinética por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Precursores de Proteínas/metabolismo , Troponina T/metabolismoRESUMO
MicroRNAs have been associated with cardiomyocyte apoptosis, a process involved in myocardial remodelling in aortic valve (Av) stenosis (AS). Our aim was to analyse whether the dysregulation of myocardial microRNAs was related to cardiomyocyte apoptosis in AS patients. Endomyocardial biopsies were obtained from 28 patients with severe AS (based on pressure gradients and Av area) referred for Av replacement and from necropsies of 10 cardiovascular disease-free control subjects. AS patients showed an increased (P<0.001) cardiomyocyte apoptotic index (CMAI) compared with controls. Two clusters of patients were identified according to the CMAI: group 1 (CMAI ≤ 0.08%; n=16) and group 2 (CMAI > 0.08%; n=12). Group 2 patients presented lower cardiomyocyte density (P<0.001) and ejection fraction (P<0.05), and higher troponin T levels (P<0.05), prevalence of heart failure (HF; P<0.05) and NT-proBNP levels (P<0.05) than those from group 1. miRNA expression profile analysed in 5 patients randomly selected from each group showed 64 microRNAs down-regulated and 6 up-regulated (P<0.05) in group 2 compared with group 1. Those microRNAs with the highest fold-change were validated in the full two groups corroborating that miR-10b, miR-125b-2* and miR-338-3p were down-regulated (P<0.05) in group 2 compared with group 1 and control subjects. These three microRNAs were inversely correlated (P<0.05) with the CMAI. Inhibition of miR-10b induced an increase (P<0.05) of apoptosis and increased expression (P<0.05) of apoptosis protease-activating factor-1 (Apaf-1) in HL-1 cardiomyocytes. In conclusion, myocardial down-regulation of miR-10b may be involved in increased cardiomyocyte apoptosis in AS patients, probably through Apaf-1 up-regulation, contributing to cardiomyocyte damage and to the development of HF.
Assuntos
Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/fisiopatologia , MicroRNAs/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Idoso , Estenose da Valva Aórtica/metabolismo , Apoptose , Regulação para Baixo , Feminino , Humanos , Masculino , MicroRNAs/metabolismo , Troponina T/genética , Troponina T/metabolismoRESUMO
Hypertensive heart disease (HHD) can no longer be considered as the beneficial adaptive result of the hypertrophy of cardiomyocytes in response to pressure overload leading to the development of left ventricular hypertrophy. The current evidence indicates that in patients with HHD, pathological lesions in the myocardium lead to maladaptive structural remodeling and subsequent alterations in cardiac function, electrical activity, and perfusion, all contributing to poor outcomes. Diffuse myocardial interstitial fibrosis is probably the most critically involved lesion in these disorders. Therefore, in this review, we will focus on the histological characteristics, the mechanisms, and the clinical consequences of myocardial interstitial fibrosis in patients with HHD. In addition, we will consider the most useful tools for the noninvasive diagnosis of myocardial interstitial fibrosis in patients with HHD, as well as the most effective available therapeutic strategies to prevent its development or facilitate its regression in this patient population. Finally, we will issue a call to action for the need for more fundamental and clinical research on myocardial interstitial fibrosis in HHD.
Assuntos
Cardiomiopatias , Cardiopatias , Hipertensão , Humanos , Cardiopatias/patologia , Miocárdio/patologia , Hipertrofia Ventricular Esquerda , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Hipertensão/patologia , FibroseRESUMO
Myocardial remodelling, entailing cellular and molecular changes in the different components of the cardiac tissue in response to damage, underlies the morphological and structural changes leading to cardiac remodelling, which in turn contributes to cardiac dysfunction and disease progression. Since cardiac tissue is not available for histomolecular diagnosis, surrogate markers are needed for evaluating myocardial remodelling as part of the clinical management of patients with cardiac disease. In this setting, circulating biomarkers, a component of the liquid biopsy, provide a promising approach for the fast, affordable and scalable screening of large numbers of patients, allowing the detection of different pathological features related to myocardial remodelling, aiding in risk stratification and therapy monitoring. However, despite the advances in the field and the identification of numerous potential candidates, their implementation in clinical practice beyond natriuretic peptides and troponins is mostly lacking. In this review, we will discuss some biomarkers related to alterations in the main cardiac tissue compartments (cardiomyocytes, extracellular matrix, endothelium and immune cells) which have shown potential for the assessment of cardiovascular risk, cardiac remodelling and therapy effects. The hurdles and challenges for their translation into clinical practice will also be addressed.
Assuntos
Biomarcadores , Remodelação Ventricular , Humanos , Biomarcadores/sangue , Remodelação Ventricular/fisiologia , Miocárdio/patologia , Miocárdio/metabolismo , Cardiopatias/sangue , Cardiopatias/diagnóstico , Cardiopatias/terapia , Cardiopatias/fisiopatologiaRESUMO
OBJECTIVE: Heart failure (HF) is characterised by collagen deposition. Urinary proteomic profiling (UPP) followed by peptide sequencing identifies parental proteins, for over 70% derived from collagens. This study aimed to refine understanding of the antifibrotic action of spironolactone. METHODS: In this substudy (n=290) to the Heart 'Omics' in Ageing Study trial, patients were randomised to usual therapy combined or not with spironolactone 25-50 mg/day and followed for 9 months. The analysis included 1498 sequenced urinary peptides detectable in ≥30% of patients and carboxyterminal propeptide of procollagen I (PICP) and PICP/carboxyterminal telopeptide of collagen I (CITP) as serum biomarkers of COL1A1 synthesis. After rank normalisation of biomarker distributions, between-group differences in their changes were assessed by multivariable-adjusted mixed model analysis of variance. Correlations between the changes in urinary peptides and in serum PICP and PICP/CITP were compared between groups using Fisher's Z transform. RESULTS: Multivariable-adjusted between-group differences in the urinary peptides with error 1 rate correction were limited to 27 collagen fragments, of which 16 were upregulated (7 COL1A1 fragments) on spironolactone and 11 downregulated (4 COL1A1 fragments). Over 9 months of follow-up, spironolactone decreased serum PICP from 81 (IQR 66-95) to 75 (61-90) µg/L and PICP/CITP from 22 (17-28) to 18 (13-26), whereas no changes occurred in the control group, resulting in a difference (spironolactone minus control) expressed in standardised units of -0.321 (95% CI 0.0007). Spironolactone did not affect the correlations between changes in urinary COL1A1 fragments and in PICP or the PICP/CITP ratio. CONCLUSIONS: Spironolactone decreased serum markers of collagen synthesis and predominantly downregulated urinary collagen-derived peptides, but upregulated others. The interpretation of these opposite UPP trends might be due to shrinking the body-wide pool of collagens, explaining downregulation, while some degree of collagen synthesis must be maintained to sustain vital organ functions, explaining upregulation. Combining urinary and serum fibrosis markers opens new avenues for the understanding of the action of antifibrotic drugs. TRIAL REGISTRATION NUMBER: NCT02556450.
Assuntos
Biomarcadores , Colágeno Tipo I , Insuficiência Cardíaca , Antagonistas de Receptores de Mineralocorticoides , Proteômica , Espironolactona , Humanos , Espironolactona/uso terapêutico , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Masculino , Feminino , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Idoso , Proteômica/métodos , Biomarcadores/urina , Biomarcadores/sangue , Colágeno Tipo I/urina , Colágeno Tipo I/sangue , Pessoa de Meia-Idade , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/urina , Pró-Colágeno/sangue , Resultado do Tratamento , Fibrose , Cadeia alfa 1 do Colágeno Tipo IRESUMO
BACKGROUND: Patients with type 2 diabetes mellitus (T2DM) present subclinical left ventricular systolic and/or diastolic dysfunction (LVD). Dipeptidyl peptidase-4 (DPP4) inactivates peptides that possess cardioprotective actions. Our aim was to analyze whether the activity of circulating DPP4 is associated with echocardiographically defined LVD in asymptomatic patients with T2DM. METHODS: In this cross-sectional study, we examined 83 T2DM patients with no coronary or valve heart disease and 59 age and gender-matched non-diabetic subjects. Plasma DPP4 activity (DPP4a) was measured by enzymatic assay and serum amino-terminal pro-brain natriuretic peptide (NT-proBNP) was measured by enzyme-linked immunosorbent assay. LV function was assessed by two-dimensional echocardiographic imaging, targeted M-mode recordings and Doppler ultrasound measurements. Differences in means were assessed by t-tests and one-way ANOVA. Associations were assessed by adjusted multiple linear regression and logistic regression analyses. RESULTS: DPP4a was increased in T2DM patients as compared with non-diabetic subjects (5855 ± 1632 vs 5208 ± 957 pmol/min/mL, p < 0.05). Clinical characteristics and echocardiographic parameters assessing LV morphology were similar across DPP4a tertiles in T2DM patients. However, prevalence of LVD progressively increased across incremental DPP4a tertiles (13%, 39% and 71%, all p < 0.001). Multivariate regression analysis confirmed the independent associations of DPP4a with LVD in T2DM patients (p < 0.05). Similarly, multiple logistic regression analysis showed that an increase of 100 pmol/min/min plasma DPP4a was independently associated with an increased frequency of LVD with an adjusted odds ratio of 1.10 (95% CI, 1.04 to 1.15, p = 0.001). CONCLUSIONS: An excessive activity of circulating DPP4 is independently associated with subclinical LVD in T2DM patients. Albeit descriptive, these findings suggest that DPP4 may be involved in the mechanisms of LVD in T2DM.
Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Proteína GAP-43/metabolismo , Coração/inervação , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Nestina/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Animais , MasculinoRESUMO
Heart failure is a leading cause of mortality and hospitalization worldwide. Cardiac fibrosis, resulting from the excessive deposition of collagen fibers, is a common feature across the spectrum of conditions converging in heart failure. Eventually, either reparative or reactive in nature, in the long-term cardiac fibrosis contributes to heart failure development and progression and is associated with poor clinical outcomes. Despite this, specific cardiac antifibrotic therapies are lacking, making cardiac fibrosis an urgent unmet medical need. In this context, a better patient phenotyping is needed to characterize the heterogenous features of cardiac fibrosis to advance toward its personalized management. In this review, we will describe the different phenotypes associated with cardiac fibrosis in heart failure and we will focus on the potential usefulness of imaging techniques and circulating biomarkers for the non-invasive characterization and phenotyping of this condition and for tracking its clinical impact. We will also recapitulate the cardiac antifibrotic effects of existing heart failure and non-heart failure drugs and we will discuss potential strategies under preclinical development targeting the activation of cardiac fibroblasts at different levels, as well as targeting additional extracardiac processes.
Assuntos
Insuficiência Cardíaca , Miocárdio , Humanos , Miocárdio/patologia , Fibroblastos , Biomarcadores , FibroseRESUMO
BACKGROUND: Myocardial fibrosis may increase vulnerability to poor prognosis in patients with heart failure (HF), even in those patients exhibiting left ventricular reverse remodeling (LVRR) after guideline-based therapies. OBJECTIVES: This study sought to characterize fibrosis at baseline in patients with HF with left ventricular ejection fraction (LVEF) <50% by determining serum collagen type I-derived peptides (procollagen type I C-terminal propeptide [PICP] and ratio of collagen type I C-terminal telopeptide to matrix metalloproteinase-1) and to evaluate their association with LVRR and prognosis. METHODS: Peptides were determined in 1,034 patients with HF at baseline. One-year echocardiography was available in 665 patients. Associations of peptides with 1-year changes in echocardiographic variables were analyzed by multivariable linear mixed models. LVEF was considered improved if it increased by ≥15% or to ≥50% or if it increased by ≥10% to >40% in patients with LVEF ≤40%. Cardiovascular death and HF-related outcomes were analyzed in all patients randomized to derivation (n = 648) and validation (n = 386) cohorts. RESULTS: Continuous associations with echocardiographic changes were observed only for PICP. Compared with high-PICP (≥108.1 ng/mL) patients, low-PICP (<108.1 ng/mL) patients exhibited enhanced LVRR and a lower risk of HF-related outcomes (P ≤ 0.018), with women and nonischemic patients with HF showing a stronger LVEF increase (interaction P ≤ 0.010). LVEF increase was associated with a better prognosis, particularly in low-PICP patients (interaction P ≤ 0.029). Only patients with both low PICP and improved LVEF exhibited a better clinical evolution than patients with nonimproved LVEF (P < 0.001). CONCLUSIONS: Phenotyping with PICP, a peptide associated with myocardial fibrosis, may be useful to differentiate patients with HF who are more likely to experience clinical myocardial recovery from those with partial myocardial improvement.
Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Humanos , Feminino , Colágeno Tipo I , Volume Sistólico , Função Ventricular Esquerda , Fragmentos de Peptídeos , Pró-Colágeno , Biomarcadores , Colágeno , Peptídeos , FibroseRESUMO
Predicting the progression of small aneurysms is a main challenge in abdominal aortic aneurysm (AAA) management. The combination of circulating biomarkers and image techniques might provide an alternative for risk stratification. We evaluated the association of plasma TAT complexes (TAT) and D-dimer with AAA severity in 3 groups of patients: group 1, without AAA (n = 52), group 2, AAA 40−50 mm (n = 51) and group 3, AAA > 50 mm (n = 50). TAT (p < 0.001) and D-dimer (p < 0.001) were increased in patients with AAA (groups 2 and 3) vs. group 1. To assess the association between baseline TAT and D-dimer concentrations, and AAA growth, aortic diameter and volume (volumetry) were measured by computed tomography angiography (CTA) in group 2 at recruitment (baseline) and 1-year after inclusion. Baseline D-dimer and TAT levels were associated with AAA diameter and volume variations at 1-year independently of confounding factors (p ≤ 0.044). Additionally, surgery incidence, recorded during a 4-year follow-up in group 2, was associated with larger aneurysms, assessed by aortic diameter and volumetry (p ≤ 0.036), and with elevated TAT levels (sub-hazard ratio 1.3, p ≤ 0.029), while no association was found for D-dimer. The combination of hemostatic parameters and image techniques might provide valuable tools to evaluate AAA growth and worse evolution.
RESUMO
Anthracycline-based cancer chemotherapy (ACC) causes myocardial fibrosis, a lesion contributing to left ventricular dysfunction (LVD). We investigated whether the procollagen-derived type-I C-terminal-propeptide (PICP): (1) associates with subclinical LVD (sLVD) at 3-months after ACC (3m-post-ACC); (2) predicts cardiotoxicity 1-year after ACC (12m-post-ACC) in breast cancer patients (BC-patients); and (3) associates with LVD in ACC-induced heart failure patients (ACC-HF-patients). Echocardiography, serum PICP and biomarkers of cardiomyocyte damage were assessed in two independent cohorts of BC-patients: CUN (n = 87) at baseline, post-ACC, and 3m and 12m (n = 65)-post-ACC; and HULAFE (n = 70) at baseline, 3m and 12m-post-ACC. Thirty-seven ACC-HF-patients were also studied. Global longitudinal strain (GLS)-based sLVD (3m-post-ACC) and LV ejection fraction (LVEF)-based cardiotoxicity (12m-post-ACC) were defined according to guidelines. BC-patients: all biomarkers increased at 3m-post-ACC versus baseline. PICP was particularly increased in patients with sLVD (interaction-p < 0.001) and was associated with GLS (p < 0.001). PICP increase at 3m-post-ACC predicted cardiotoxicity at 12m-post-ACC (odds-ratio ≥ 2.95 per doubling PICP, p ≤ 0.025) in both BC-cohorts, adding prognostic value to the early assessment of GLS and LVEF. ACC-HF-patients: PICP was inversely associated with LVEF (p = 0.004). In ACC-treated BC-patients, an early increase in PICP is associated with early sLVD and predicts cardiotoxicity 1 year after ACC. PICP is also associated with LVD in ACC-HF-patients.
RESUMO
AIMS: The HOMAGE randomized trial found that spironolactone reduced left atrial volume index (LAVI), E:A ratio, and a marker of collagen type I synthesis (procollagen type I C-terminal propeptide) in patients at risk of heart failure (HF). Previous trials showed that patients with HF, preserved ejection fraction and low serum collagen type I C-terminal telopeptide to matrix metalloproteinase-1 ratio (CITP:MMP-1), associated with high collagen cross-linking, had less improvement in diastolic function with spironolactone. We evaluated the interaction between serum CITP:MMP-1 and spironolactone on cardiac function in the HOMAGE trial. METHODS AND RESULTS: Patients at risk of HF were randomized to spironolactone (n = 260) or not (n = 255). Blood sampling and echocardiography were done at baseline, one and nine months. CITP:MMP-1 was used as an indirect measure of collagen cross-linking. Higher baseline CITP:MMP-1 (i.e. lower collagen cross-linking) was associated with greater reductions in LAVI with spironolactone at both one (p = 0.003) and nine (p = 0.01) months, but no interaction was observed for E:A ratio. Spironolactone reduced LAVI after one and nine months only for those patients in the third tertile of CITP:MMP-1 (estimated lowest collagen cross-linking) [mean differencesspiro/control : -1.77 (95% confidence interval, CI -2.94 to -0.59) and -2.52 (95% CI -4.46 to -0.58) mL/m2 ; interaction pacross-tertiles = 0.005; interaction pthird tertile = 0.008] with a similar trend for N-terminal pro-B-type natriuretic peptide which was consistently reduced by spironolactone only in the lowest collagen cross-linking tertile [mean differencesspiro/control : -0.47 (95% CI -0.66 to -0.28) and -0.31 (95% CI -0.59 to -0.04) ng/L; interaction pacross-tertiles = 0.09; interaction pthird tertile < 0.001]. CONCLUSIONS: These findings suggest that, for patients at risk of HF, the effects of spironolactone on left atrial remodelling may be more prominent in patients with less collagen cross-linking (indirectly assessed by serum CITP:MMP-1).
Assuntos
Remodelamento Atrial , Insuficiência Cardíaca , Biomarcadores , Colágeno Tipo I , Humanos , Fragmentos de Peptídeos , Espironolactona/uso terapêutico , Volume SistólicoRESUMO
Activation of apoptosis contributes to cardiomyocyte dysfunction and death in diabetic cardiomyopathy. The peptide glucagon-like peptide-1 (GLP-1), a hormone that is the basis of emerging therapy for type 2 diabetic patients, has cytoprotective actions in different cellular models. We investigated whether GLP-1 inhibits apoptosis in HL-1 cardiomyocytes stimulated with staurosporine, palmitate, and ceramide. Studies were performed in HL-1 cardiomyocytes. Apoptosis was induced by incubating HL-1 cells with staurosporine (175 nM), palmitate (135 µM), or ceramide (15 µM) for 24 h. In staurosporine-stimulated HL-1 cardiomyocytes, phosphatidylserine exposure, Bax-to-Bcl-2 ratio, Bad phosphorylation (Ser(136)), BNIP3 expression, mitochondrial membrane depolarization, cytochrome c release, caspase-3 activation, DNA fragmentation, and mammalian target of rapamycin (mTOR)/p70S6K phosphorylation (Ser(2448) and Thr(389), respectively) were assessed. Apoptotic hallmarks were also measured in the absence or presence of low (5 mM) and high (10 mM) concentrations of glucose. In addition, phosphatidylserine exposure and DNA fragmentation were analyzed in palmitate- and ceramide-stimulated cells. Staurosporine increased apoptosis in HL-1 cardiomyocytes. GLP-1 (100 nM) partially inhibited staurosporine-induced mitochondrial membrane depolarization and completely blocked the rest of the staurosporine-induced apoptotic changes. This cytoprotective effect was mainly mediated by phosphatidylinositol 3-kinase (PI3K) and partially dependent on ERK1/2. Increasing concentrations of glucose did not influence GLP-1-induced protection against staurosporine. Furthermore, GLP-1 inhibited palmitate- and ceramide-induced phosphatidylserine exposure and DNA fragmentation. Incretin GLP-1 protects HL-1 cardiomyocytes against activation of apoptosis. This cytoprotective ability is mediated mainly by the PI3K pathway and partially by the ERK1/2 pathway and seems to be glucose independent. It is proposed that therapies based on GLP-1 may contribute to prevent cardiomyocyte apoptosis.
Assuntos
Apoptose/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Incretinas/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Animais , Caspase 3/biossíntese , Linhagem Celular , Ceramidas/farmacologia , Citocromos c/metabolismo , Fragmentação do DNA , Inibidores Enzimáticos/farmacologia , Glucose/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Membrana/biossíntese , Camundongos , Proteínas Mitocondriais/biossíntese , Palmitatos/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilserinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Estaurosporina/farmacologia , Serina-Treonina Quinases TOR/metabolismoRESUMO
Diffuse myocardial fibrosis resulting from the excessive deposition of collagen fibres through the entire myocardium is encountered in a number of chronic cardiac diseases. This lesion results from alterations in the regulation of fibrillary collagen turnover by fibroblasts, facilitating the excessive deposition of type I and type III collagen fibres within the myocardial interstitium and around intramyocardial vessels. The available evidence suggests that, beyond the extent of fibrous deposits, collagen composition and the physicochemical properties of the fibres are also relevant in the detrimental effects of diffuse myocardial fibrosis on cardiac function and clinical outcomes in patients with heart failure. In this regard, findings from the past 20 years suggest that various clinicopathological phenotypes of diffuse myocardial fibrosis exist in patients with heart failure. In this Review, we summarize the current knowledge on the mechanisms and detrimental consequences of diffuse myocardial fibrosis in heart failure. Furthermore, we discuss the validity and usefulness of available imaging techniques and circulating biomarkers to assess the clinicopathological variation in this lesion and to track its clinical evolution. Finally, we highlight the currently available and potential future therapeutic strategies aimed at personalizing the prevention and reversal of diffuse myocardial fibrosis in patients with heart failure.