RESUMO
Hepatocellular carcinoma (HCC), the fourth leading cause of cancer mortality worldwide, develops almost exclusively in patients with chronic liver disease and advanced fibrosis1,2. Here we interrogated functions of hepatic stellate cells (HSCs), the main source of liver fibroblasts3, during hepatocarcinogenesis. Genetic depletion, activation or inhibition of HSCs in mouse models of HCC revealed their overall tumour-promoting role. HSCs were enriched in the preneoplastic environment, where they closely interacted with hepatocytes and modulated hepatocarcinogenesis by regulating hepatocyte proliferation and death. Analyses of mouse and human HSC subpopulations by single-cell RNA sequencing together with genetic ablation of subpopulation-enriched mediators revealed dual functions of HSCs in hepatocarcinogenesis. Hepatocyte growth factor, enriched in quiescent and cytokine-producing HSCs, protected against hepatocyte death and HCC development. By contrast, type I collagen, enriched in activated myofibroblastic HSCs, promoted proliferation and tumour development through increased stiffness and TAZ activation in pretumoural hepatocytes and through activation of discoidin domain receptor 1 in established tumours. An increased HSC imbalance between cytokine-producing HSCs and myofibroblastic HSCs during liver disease progression was associated with increased HCC risk in patients. In summary, the dynamic shift in HSC subpopulations and their mediators during chronic liver disease is associated with a switch from HCC protection to HCC promotion.
Assuntos
Carcinogênese , Carcinoma Hepatocelular , Células Estreladas do Fígado , Neoplasias Hepáticas , Animais , Carcinogênese/patologia , Carcinoma Hepatocelular/patologia , Proliferação de Células , Colágeno Tipo I/metabolismo , Receptor com Domínio Discoidina 1/metabolismo , Progressão da Doença , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos , Humanos , Cirrose Hepática/complicações , Neoplasias Hepáticas/patologia , Camundongos , Miofibroblastos/patologiaRESUMO
Cholangiocarcinoma (CCA) comprises diverse tumors of the biliary tree and is characterized by late diagnosis, short-term survival, and chemoresistance. CCAs are mainly classified according to their anatomical location and include diverse molecular subclasses harboring inter-tumoral and intratumoral heterogeneity. Besides the tumor cell component, CCA is also characterized by a complex and dynamic tumor microenvironment where tumor cells and stromal cells crosstalk in an intricate network of interactions. Cancer-associated fibroblasts, one of the most abundant cell types in the tumor stroma of CCA, are actively involved in cholangiocarcinogenesis by participating in multiple aspects of the disease including extracellular matrix remodeling, immunomodulation, neo-angiogenesis, and metastasis. Despite their overall tumor-promoting role, recent evidence indicates the presence of transcriptional and functional heterogeneous CAF subtypes with tumor-promoting and tumor-restricting properties. To elucidate the complexity and potentials of cancer-associated fibroblasts as therapeutic targets in CCA, this review will discuss the origin of cancer-associated fibroblasts, their heterogeneity, crosstalk, and role during tumorigenesis, providing an overall picture of the present and future perspectives toward cancer-associated fibroblasts targeting CCA.
Assuntos
Aracnodactilia , Neoplasias dos Ductos Biliares , Sistema Biliar , Fibroblastos Associados a Câncer , Colangiocarcinoma , Contratura , Humanos , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Neoplasias dos Ductos Biliares/tratamento farmacológico , Ductos Biliares Intra-Hepáticos , Microambiente TumoralRESUMO
Abscisic acid (ABA) has shown anti-inflammatory and immunoregulatory properties in preclinical models of diabetes and inflammation. Herein, we studied the effects of ABA on angiogenesis, a strictly controlled process that, when dysregulated, leads to severe angiogenic disorders including vascular overgrowth, exudation, cellular inflammation and organ dysfunction. By using a 3D sprouting assay, we show that ABA effectively inhibits migration, growth and expansion of endothelial tubes without affecting cell viability. Analyses of the retinal vasculature in developing normoxic and hyperoxic mice challenged by oxygen toxicity reveal that exogenously administered ABA stunts the development and regeneration of blood vessels. In these models, ABA downregulates endothelial cell (EC)-specific growth and migratory genes, interferes with tip and stalk cell specification, and hinders the function of filopodial protrusions required for precise guidance of vascular sprouts. In addition, ABA skews macrophage polarization towards the M1 phenotype characterized by anti-angiogenic marker expression. In accordance with this, ABA treatment accelerates macrophage-induced programmed regression of fetal blood vessels. These findings reveal protective functions of ABA against neovascular growth through modulation of EC and macrophage plasticity, suggesting the potential utility of ABA as a treatment in vasoproliferative diseases.
Assuntos
Ácido Abscísico/farmacologia , Plasticidade Celular/efeitos dos fármacos , Células Endoteliais/citologia , Macrófagos/citologia , Neovascularização Fisiológica/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Ácido Abscísico/uso terapêutico , Animais , Animais Recém-Nascidos , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Feto/efeitos dos fármacos , Feto/patologia , Fibrina/farmacologia , Géis , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Modelos Biológicos , Fenótipo , Retina/efeitos dos fármacos , Neovascularização Retiniana/tratamento farmacológico , Neovascularização Retiniana/patologiaRESUMO
Cancer-associated fibroblasts (CAFs) are one of the most abundant stromal cell type in the tumor microenvironment (TME) of intrahepatic cholangiocarcinoma (iCCA), where they are actively involved in cancer progression through a complex network of interactions with other stromal cells. The majority of the studies investigating CAFs in iCCA have focused their attention on CAF tumor-promoting roles, remarking their potential as therapeutic targets. However, indiscriminate targeting of CAFs in other desmoplastic tumors has ended in failure with no effects or even accelerated cancer progression and reduced survival, indicating the urgent need to better understand the nuances and functions of CAFs to avoid deleterious effects. Indeed, recent single cell RNA sequencing studies have shown that heterogeneous CAF subpopulations coexist in the same tumor, some promoting- and other restricting- tumor growth. Moreover, recent studies have shown that in iCCA, diverse CAF subtypes interact differently with the cells of the TME, suggesting that CAFs may dynamically change their phenotypes during tumor progression, a field that remains uninvestigated. The characterization of heterogenous CAF subpopulations and their functionality, will provide a feasible and safer approach to facilitate the development of new therapeutic approaches aimed at targeting CAFs and their interactions with other stromal cells in the TME rather than solely tumor cells in iCCA. Here, we discuss the origin of CAFs, as well as their heterogeneity, plasticity, mechanisms and targeting strategies to provide a brief snapshot of the current knowledge in iCCA.
Assuntos
Neoplasias dos Ductos Biliares , Fibroblastos Associados a Câncer , Colangiocarcinoma , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Resistencia a Medicamentos Antineoplásicos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Microambiente TumoralRESUMO
Fibrosis contributes to ~45% of deaths in western countries. In chronic liver disease, fibrosis is a major factor determining outcomes, but efficient antifibrotic therapies are lacking. Although platelet-derived growth factor and transforming growth factor-ß constitute key fibrogenic mediators, they do not account for the well-established link between cell death and fibrosis in the liver. Here, we hypothesized that damage-associated molecular patterns (DAMPs) may link epithelial cell death to fibrogenesis in the injured liver. DAMP receptor screening identified purinergic receptor P2Y14 among several candidates as highly enriched in hepatic stellate cells (HSCs), the main fibrogenic cell type of the liver. Conversely, P2Y14 ligands uridine 5'-diphosphate (UDP)-glucose and UDP-galactose were enriched in hepatocytes and were released upon different modes of cell death. Accordingly, ligand-receptor interaction analysis that combined proteomic and single-cell RNA sequencing data revealed P2Y14 ligands and P2Y14 receptor as a link between dying cells and HSCs, respectively. Treatment with P2Y14 ligands or coculture with dying hepatocytes promoted HSC activation in a P2Y14-dependent manner. P2Y14 ligands activated extracellular signal-regulated kinase (ERK) and Yes-associated protein (YAP) signaling in HSCs, resulting in ERK-dependent HSC activation. Global and HSC-selective P2Y14 deficiency attenuated liver fibrosis in multiple mouse models of liver injury. Functional expression of P2Y14 was confirmed in healthy and diseased human liver and human HSCs. In conclusion, P2Y14 ligands and their receptor constitute a profibrogenic DAMP pathway that directly links cell death to fibrogenesis.
Assuntos
Células Estreladas do Fígado , Hepatócitos , Receptores Purinérgicos P2Y , Receptores Purinérgicos P2 , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Humanos , Ligantes , Fígado/metabolismo , Cirrose Hepática/patologia , Camundongos , Proteômica , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Análise de Célula Única , Difosfato de Uridina/metabolismo , Proteínas de Sinalização YAPRESUMO
Liver fibrosis is defined as excessive accumulation of extracellular matrix, and results from maladaptive wound healing processes that occur in response to chronic liver injury and inflammation. The main etiologies of liver fibrosis include nonalcoholic fatty liver disease (NAFLD), chronic viral hepatitis, as well as alcoholic and cholestatic liver disease. In patients, liver fibrosis typically develops over several decades and can progress to cirrhosis, and liver failure due to replacement of functional liver tissue with scar tissue. Additionally, advanced fibrosis and cirrhosis are associated with an increased risk for the development of hepatocellular carcinoma. On a cellular level, hepatic fibrosis is mediated by activated hepatic stellate cells, the primary fibrogenic cell type of the liver. Murine models are employed to recapitulate, understand, and therapeutically target mechanisms of fibrosis and hepatic stellate cell activation. Here, we summarize different mouse models of liver fibrosis focusing on the most commonly used models of toxic, biliary, and metabolically induced liver fibrosis, triggered by treatment with carbon tetrachloride (CCl4), thioacetamide (TAA), bile duct ligation (BDL), 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), and high-fat diets.
Assuntos
Células Estreladas do Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Animais , Tetracloreto de Carbono/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Piridinas/efeitos adversos , Tioacetamida/efeitos adversosRESUMO
Cancer-associated fibroblasts (CAF) may exert tumor-promoting and tumor-suppressive functions, but the mechanisms underlying these opposing effects remain elusive. Here, we sought to understand these potentially opposing functions by interrogating functional relationships among CAF subtypes, their mediators, desmoplasia, and tumor growth in a wide range of tumor types metastasizing to the liver, the most common organ site for metastasis. Depletion of hepatic stellate cells (HSC), which represented the main source of CAF in mice and patients in our study, or depletion of all CAF decreased tumor growth and mortality in desmoplastic colorectal and pancreatic metastasis but not in nondesmoplastic metastatic tumors. Single-cell RNA-Seq in conjunction with CellPhoneDB ligand-receptor analysis, as well as studies in immune cell-depleted and HSC-selective knockout mice, uncovered direct CAF-tumor interactions as a tumor-promoting mechanism, mediated by myofibroblastic CAF-secreted (myCAF-secreted) hyaluronan and inflammatory CAF-secreted (iCAF-secreted) HGF. These effects were opposed by myCAF-expressed type I collagen, which suppressed tumor growth by mechanically restraining tumor spread, overriding its own stiffness-induced mechanosignals. In summary, mechanical restriction by type I collagen opposes the overall tumor-promoting effects of CAF, thus providing a mechanistic explanation for their dual functions in cancer. Therapeutic targeting of tumor-promoting CAF mediators while preserving type I collagen may convert CAF from tumor promoting to tumor restricting.
Assuntos
Fibroblastos Associados a Câncer/metabolismo , Colágeno Tipo I/metabolismo , Células Estreladas do Fígado/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Mecanotransdução Celular , Animais , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Colágeno Tipo I/genética , Células Estreladas do Fígado/patologia , Humanos , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Camundongos Knockout , Metástase NeoplásicaRESUMO
Cancer-associated fibroblasts (CAF) are a poorly characterized cell population in the context of liver cancer. Our study investigates CAF functions in intrahepatic cholangiocarcinoma (ICC), a highly desmoplastic liver tumor. Genetic tracing, single-cell RNA sequencing, and ligand-receptor analyses uncovered hepatic stellate cells (HSC) as the main source of CAF and HSC-derived CAF as the dominant population interacting with tumor cells. In mice, CAF promotes ICC progression, as revealed by HSC-selective CAF depletion. In patients, a high panCAF signature is associated with decreased survival and increased recurrence. Single-cell RNA sequencing segregates CAF into inflammatory and growth factor-enriched (iCAF) and myofibroblastic (myCAF) subpopulations, displaying distinct ligand-receptor interactions. myCAF-expressed hyaluronan synthase 2, but not type I collagen, promotes ICC. iCAF-expressed hepatocyte growth factor enhances ICC growth via tumor-expressed MET, thus directly linking CAF to tumor cells. In summary, our data demonstrate promotion of desmoplastic ICC growth by therapeutically targetable CAF subtype-specific mediators, but not by type I collagen.