Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Br J Cancer ; 130(12): 2016-2026, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704478

RESUMO

BACKGROUND: Tregs trafficking is controlled by CXCR4. In Renal Cell Carcinoma (RCC), the effect of the new CXCR4 antagonist, R54, was explored in peripheral blood (PB)-Tregs isolated from primary RCC patients. METHODS: PB-Tregs were isolated from 77 RCC patients and 38 healthy donors (HDs). CFSE-T effector-Tregs suppression assay, IL-35, IFN-γ, IL-10, TGF-ß1 secretion, and Nrp-1+Tregs frequency were evaluated. Tregs were characterised for CTLA-4, PD-1, CD40L, PTEN, CD25, TGF-ß1, FOXP3, DNMT1 transcriptional profile. PTEN-pAKT signalling was evaluated in the presence of R54 and/or triciribine (TCB), an AKT inhibitor. Methylation of TSDR (Treg-Specific-Demethylated-Region) was conducted. RESULTS: R54 impaired PB-RCC-Tregs function, reduced Nrp-1+Tregs frequency, the release of IL-35, IL-10, and TGF-ß1, while increased IFN-γ Teff-secretion. The CXCR4 ligand, CXCL12, recruited CD25+PTEN+Tregs in RCC while R54 significantly reduced it. IL-2/PMA activates Tregs reducing pAKT+Tregs while R54 increases it. The AKT inhibitor, TCB, prevented the increase in pAKT+Tregs R54-mediated. Moreover, R54 significantly reduced FOXP3-TSDR demethylation with DNMT1 and FOXP3 downregulation. CONCLUSION: R54 impairs Tregs function in primary RCC patients targeting PTEN/PI3K/AKT pathway, reducing TSDR demethylation and FOXP3 and DNMT1 expression. Thus, CXCR4 targeting is a strategy to inhibit Tregs activity in the RCC tumour microenvironment.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , PTEN Fosfo-Hidrolase , Receptores CXCR4 , Linfócitos T Reguladores , Humanos , Linfócitos T Reguladores/imunologia , PTEN Fosfo-Hidrolase/metabolismo , Receptores CXCR4/metabolismo , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Adulto , Transdução de Sinais , Fatores de Transcrição Forkhead/metabolismo
2.
Inorg Chem ; 63(8): 3724-3734, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38359353

RESUMO

Silver thiolate nanoclusters (Ag NCs) show distinctive optical properties resulting from their hybrid nature, metallic and molecular, exhibiting size-, structure-, and surface-dependent photoluminescence, thus enabling the exploitation of Ag NCs for potential applications in nanobiotechnology, catalysis, and biomedicine. However, tailoring Ag NCs for specific applications requires achieving long-term stability and may involve modifying surface chemistry, fine-tuning ligand composition, or adding functional groups. In this study, we report the synthesis of novel Ag NCs using 2-ethanephenylthiolate (SR) as a ligand, highlight critical points addressing stability, and characterize their optical and structural properties. A preliminary electrical characterization revealed high anisotropy, well suited for potential use in electronics/sensing applications. We also present the synthesis and characterization of Ag NCs using 10-carboxylic 2-ol thiolate (SR'COOH) having a terminal carboxylic group for conjugation with amine-containing molecules. We present a preliminary assessment of its bioconjugation capability using bovine serum albumin as a model protein indicating its prospective application as a biomolecule support.


Assuntos
Prata , Prata/química , Ligantes
3.
BMC Cancer ; 23(1): 1010, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858132

RESUMO

BACKGROUND: Metastatic disease in tumors originating from the gastrointestinal tract can exhibit varying degrees of tumor burden at presentation. Some patients follow a less aggressive disease course, characterized by a limited number of metastatic sites, referred to as "oligo-metastatic disease" (OMD). The precise biological characteristics that define the oligometastatic behavior remain uncertain. In this study, we present a protocol designed to prospectively identify OMD, with the aim of proposing novel therapeutic approaches and monitoring strategies. METHODS: The PREDICTION study is a monocentric, prospective, observational investigation. Enrolled patients will receive standard treatment, while translational activities will involve analysis of the tumor microenvironment and genomic profiling using immunohistochemistry and next-generation sequencing, respectively. The first primary objective (descriptive) is to determine the prevalence of biological characteristics in OMD derived from gastrointestinal tract neoplasms, including high genetic concordance between primary tumors and metastases, a significant infiltration of T lymphocytes, and the absence of clonal evolution favoring specific driver genes (KRAS and PIK3CA). The second co-primary objective (analytic) is to identify a prognostic score for true OMD, with a primary focus on metastatic colorectal cancer. The score will comprise genetic concordance (> 80%), high T-lymphocyte infiltration, and the absence of clonal evolution favoring driver genes. It is hypothesized that patients with true OMD (score 3+) will have a lower rate of progression/recurrence within one year (20%) compared to those with false OMD (80%). The endpoint of the co-primary objective is the rate of recurrence/progression at one year. Considering a reasonable probability (60%) of the three factors occurring simultaneously in true OMD (score 3+), using a significance level of α = 0.05 and a test power of 90%, the study requires a minimum enrollment of 32 patients. DISCUSSION: Few studies have explored the precise genetic and biological features of OMD thus far. In clinical settings, the diagnosis of OMD is typically made retrospectively, as some patients who undergo intensive treatment for oligometastases develop polymetastatic diseases within a year, while others do not experience disease progression (true OMD). In the coming years, the identification of true OMD will allow us to employ more personalized and comprehensive strategies in cancer treatment. TRIAL REGISTRATION: ClinicalTrials.gov ID NCT05806151.


Assuntos
Neoplasias Gastrointestinais , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Neoplasias Gastrointestinais/genética , Microambiente Tumoral
4.
Cell Mol Life Sci ; 79(10): 536, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181557

RESUMO

Microgravity-induced bone loss is a major concern for space travelers. Ground-based microgravity simulators are crucial to study the effect of microgravity exposure on biological systems and to address the limitations posed by restricted access to real space. In this work, for the first time, we adopt a multidisciplinary approach to characterize the morphological, biochemical, and molecular changes underlying the response of human bone marrow stromal cells to long-term simulated microgravity exposure during osteogenic differentiation. Our results show that osteogenic differentiation is reduced while energy metabolism is promoted. We found novel proteins were dysregulated under simulated microgravity, including CSC1-like protein, involved in the mechanotransduction of pressure signals, and PTPN11, SLC44A1 and MME which are involved in osteoblast differentiation pathways and which may become the focus of future translational projects. The investigation of cell proteome highlighted how simulated microgravity affects a relatively low number of proteins compared to time and/or osteogenic factors and has allowed us to reconstruct a hypothetical pipeline for cell response to simulated microgravity. Further investigation focused on the application of nanomaterials may help to increase understanding of how to treat or minimize the effects of microgravity.


Assuntos
Células-Tronco Mesenquimais , Ausência de Peso , Antígenos CD , Células da Medula Óssea , Diferenciação Celular/fisiologia , Humanos , Mecanotransdução Celular , Proteínas de Transporte de Cátions Orgânicos , Osteogênese , Proteoma , Simulação de Ausência de Peso
5.
Pharmacol Res ; 186: 106536, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36332810

RESUMO

Adrenergic ß2-agonists represent a mainstay in asthma management. Their chronic use has been associated with decreased bronchoprotection and rebound hyperresponsiveness. Here we investigate on the possible therapeutic advantage of a pharmacological association of ß2-agonists with montelukast, a highly selective leukotriene receptor antagonist, in modulating bronchial reactivity and controlling asthma features. The study has been conducted in vitro and in vivo and also takes advantage of the synthesis of a salt that gave us the possibility to simultaneously administer in vivo formoterol and montelukast (MFS). In vitro studies demonstrate that montelukast (1) preserves ß2-agonist response in isolated bronchi by preventing homologous ß2-adrenoceptor desensitization; (2) reduces desensitization by modulating ß2-receptor translocation in bronchial epithelial cells. In vivo studies demonstrate that sensitized mice receiving formoterol or montelukast display a significant reduction in airway hyperresponsiveness, but the ß2-agonist relaxing response is still impaired. Allergen challenge causes ß2 heterologous desensitization that is further increased by treatment in vivo with formoterol. Conversely MFS not only inhibits airway hyperresponsiveness but it rescues the ß2-agonist response. Histological analysis confirms the functional data, demonstrating an enhanced therapeutic efficiency of MSF in controlling also pulmonary metaplasia and lung inflammation. MFS is efficacious also when sensitized mice received the drug by local administration. In conclusion, the data obtained evidenced a therapeutic advantage in the association of ß2-agonists with montelukast in the control of asthma-like features and a better rescue bronchodilation response to ß2-agonists.


Assuntos
Agonistas Adrenérgicos beta , Asma , Camundongos , Animais , Fumarato de Formoterol/farmacologia , Fumarato de Formoterol/uso terapêutico , Agonistas Adrenérgicos beta/uso terapêutico , Asma/tratamento farmacológico , Acetatos/farmacologia , Acetatos/uso terapêutico
6.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35955638

RESUMO

Synthetic nucleic acid interactors represent an exciting research field due to their biotechnological and potential therapeutic applications. The translation of these molecules into drugs is a long and difficult process that justifies the continuous research of new chemotypes endowed with favorable binding, pharmacokinetic and pharmacodynamic properties. In this scenario, we describe the synthesis of two sets of homo-thymine nucleopeptides, in which nucleobases are inserted in a peptide structure, to investigate the role of the underivatized amino acid residue and the distance of the nucleobase from the peptide backbone on the nucleic acid recognition process. It is worth noting that the CD spectroscopy investigation showed that two of the reported nucleopeptides, consisting of alternation of thymine functionalized L-Orn and L-Dab and L-Arg as underivatized amino acids, were able to efficiently bind DNA and RNA targets and cross both cell and nuclear membranes.


Assuntos
Ácidos Nucleicos Peptídicos , Timina , Aminoácidos/química , DNA/química , Ácidos Nucleicos Peptídicos/química , Peptídeos/química , RNA/genética , Timina/química
7.
Chemistry ; 26(44): 10113-10125, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32603023

RESUMO

Here we investigated the structural and biological effects ensuing from the disulfide bond replacement of a potent and selective C-X-C chemokine receptor type 4 (CXCR4) peptide antagonist, with 1,4- and 1,5- disubstituted 1,2,3-triazole moieties. Both strategies produced candidates that showed high affinity and selectivity against CXCR4. Notably, when assessed for their ability to modulate the CXCL12-mediated cell migration, the 1,4-triazole variant conserved the antagonistic effect in the low-mid nanomolar range, while the 1,5-triazole one displayed the ability to activate the migration, becoming the first in class low-molecular-weight CXCR4 peptide agonist. By combining NMR and computational studies, we provided a valuable model that highlighted differences in the interactions of the two peptidomimetics with the receptor that could account for their different functional profile. Finally, we envisage that our findings could be translated to different GPCR-interacting peptides for the pursuit of novel chemical probes that could assist in dissecting the complex puzzle of this fundamental class of transmembrane receptors.


Assuntos
Dissulfetos/química , Peptídeos/química , Peptídeos/farmacologia , Receptores CXCR4/química , Triazóis/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Humanos , Ligantes , Peptidomiméticos , Receptores CXCR4/agonistas
8.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096896

RESUMO

Hyperglycemia, obesity and metabolic syndrome are negative prognostic factors in breast cancer patients. Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, achieving unprecedented efficacy in multiple malignancies. However, ICIs are associated with immune-related adverse events involving cardiotoxicity. We aimed to study if hyperglycemia could affect ipilimumab-induced anticancer efficacy and enhance its cardiotoxicity. Human cardiomyocytes and estrogen-responsive and triple-negative breast cancer cells (MCF-7 and MDA-MB-231 cell lines) were exposed to ipilimumab under high glucose (25 mM); low glucose (5.5 mM); high glucose and co-administration of SGLT-2 inhibitor (empagliflozin); shifting from high glucose to low glucose. Study of cell viability and the expression of new putative biomarkers of cardiotoxicity and resistance to ICIs (NLRP3, MyD88, cytokines) were quantified through ELISA (Cayman Chemical) methods. Hyperglycemia during treatment with ipilimumab increased cardiotoxicity and reduced mortality of breast cancer cells in a manner that is sensitive to NLRP3. Notably, treatment with ipilimumab and empagliflozin under high glucose or shifting from high glucose to low glucose reduced significantly the magnitude of the effects, increasing responsiveness to ipilimumab and reducing cardiotoxicity. To our knowledge, this is the first evidence that hyperglycemia exacerbates ipilimumab-induced cardiotoxicity and decreases its anticancer efficacy in MCF-7 and MDA-MB-231 cells. This study sets the stage for further tests on other breast cancer cell lines and primary cardiomyocytes and for preclinical trials in mice aimed to decrease glucose through nutritional interventions or administration of gliflozines during treatment with ipilimumab.


Assuntos
Biomarcadores Farmacológicos/metabolismo , Cardiotoxicidade/etiologia , Ipilimumab/efeitos adversos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos Imunológicos/efeitos adversos , Compostos Benzidrílicos/farmacologia , Antígeno CTLA-4/metabolismo , Cardiotoxicidade/metabolismo , Linhagem Celular Tumoral , Feminino , Glucose/metabolismo , Glucose/farmacologia , Glucosídeos/farmacologia , Humanos , Hiperglicemia/etiologia , Leucotrieno B4/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Fator de Transcrição RelA/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
9.
Biophys J ; 116(9): 1759-1768, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31003761

RESUMO

Studies on the dynamical properties of photosynthetic membranes of land plants and purple bacteria have been previously performed by neutron spectroscopy, revealing a tight coupling between specific photochemical reactions and macromolecular dynamics. Here, we probed the intrinsic dynamics of biotechnologically useful mutants of the green alga Chlamydomonas reinhardtii by incoherent neutron scattering coupled with prompt chlorophyll fluorescence experiments. We brought to light that single amino acid replacements in the plastoquinone (PQ)-binding niche of the photosystem II D1 protein impair electron transport (ET) efficiency between quinones and confer increased flexibility to the host membranes, expanding to the entire cells. Hence, a more flexible environment in the PQ-binding niche has been associated to a less efficient ET. A similar function/dynamics relationship was also demonstrated in Rhodobacter sphaeroides reaction centers having inhibited ET, indicating that flexibility at the quinones region plays a crucial role in evolutionarily distant organisms. Instead, a different functional/dynamical correlation was observed in algal mutants hosting a single amino acid replacement residing in a D1 domain far from the PQ-binding niche. Noteworthy, this mutant displayed the highest degree of flexibility, and besides having a nativelike ET efficiency in physiological conditions, it acquired novel, to our knowledge, phenotypic traits enabling it to preserve a high maximal quantum yield of photosystem II photochemistry in extreme habitats. Overall, in the nanosecond timescale, the degree of the observed flexibility is related to the mutation site; in the picosecond timescale, we highlighted the presence of a more pronounced dynamic heterogeneity in all mutants compared to the native cells, which could be related to a marked chemically heterogeneous environment.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Difração de Nêutrons , Fotossíntese , Chlamydomonas reinhardtii/genética , Cinética , Mutação , Complexo de Proteína do Fotossistema II/genética , Plastoquinona/metabolismo
10.
Bioorg Med Chem ; 26(9): 2539-2550, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29656988

RESUMO

Cationic nucleopeptides belong to a family of synthetic oligomers composed by amino acids and nucleobases. Their capability to recognize nucleic acid targets and to cross cellular membranes provided the basis for considering them as novel non-covalent delivery agents for nucleic acid pharmaceuticals. Herein, starting from a 12-mer nucleopeptide model, the number of cationic residues was modulated in order to obtain new nucleopeptides endowed with high solubility in acqueous medium, acceptable bio-stability, low cytotoxicity and good capability to bind nucleic acid. Two candidates were selected to further investigate their potential as nucleic acid carriers, showing higher efficiency to deliver PNA in comparison with RNA. Noteworthy, this study encourages the development of nucleopeptides as new carriers to extend the known strategies for those nucleic acid analogues, especially PNA, that still remain difficult to drive into the cells.


Assuntos
Portadores de Fármacos/metabolismo , Ácidos Nucleicos Peptídicos/metabolismo , Polilisina/metabolismo , RNA/metabolismo , Timina/análogos & derivados , Timina/metabolismo , Cátions/síntese química , Cátions/química , Cátions/metabolismo , Cátions/toxicidade , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Dicroísmo Circular , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Humanos , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/genética , Polilisina/síntese química , Polilisina/química , Polilisina/toxicidade , RNA/química , RNA/genética , Solubilidade , Temperatura , Timina/síntese química , Timina/toxicidade , Transfecção/métodos
11.
Photosynth Res ; 131(1): 15-30, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27376842

RESUMO

In the photosystem II (PSII) of oxygenic photosynthetic organisms, the reaction center (RC) core mediates the light-induced electron transfer leading to water splitting and production of reduced plastoquinone molecules. The reduction of plastoquinone to plastoquinol lowers PSII affinity for the latter and leads to its release. However, little is known about the role of protein dynamics in this process. Here, molecular dynamics simulations of the complete PSII complex embedded in a lipid bilayer have been used to investigate the plastoquinol release mechanism. A distinct dynamic behavior of PSII in the presence of plastoquinol is observed which, coupled to changes in charge distribution and electrostatic interactions, causes disruption of the interactions seen in the PSII-plastoquinone complex and leads to the "squeezing out" of plastoquinol from the binding pocket. Displacement of plastoquinol closes the second water channel, recently described in a 2.9 Å resolution PSII structure (Guskov et al. in Nat Struct Mol Biol 16:334-342, 2009), allowing to rule out the proposed "alternating" mechanism of plastoquinol-plastoquinone exchange, while giving support to the "single-channel" one. The performed simulations indicated a pivotal role of D1-Ser264 in modulating the dynamics of the plastoquinone binding pocket and plastoquinol-plastoquinone exchange via its interaction with D1-His252 residue. The effects of the disruption of this hydrogen bond network on the PSII redox reactions were experimentally assessed in the D1 site-directed mutant Ser264Lys.


Assuntos
Complexo de Proteína do Fotossistema II/metabolismo , Plastoquinona/análogos & derivados , Plastoquinona/metabolismo , Ligação de Hidrogênio , Ligantes , Simulação de Dinâmica Molecular
12.
Photosynth Res ; 125(3): 451-71, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26113435

RESUMO

A critical mass of knowledge is emerging on the interactions between plant cells and engineered nanomaterials, revealing the potential of plant nanobiotechnology to promote and support novel solutions for the development of a competitive bioeconomy. This knowledge can foster the adoption of new methodological strategies to empower the large-scale production of biomass from commercially important microalgae. The present review focuses on the potential of carbon nanotubes (CNTs) to enhance photosynthetic performance of microalgae by (i) widening the spectral region available for the energy conversion reactions and (ii) increasing the tolerance of microalgae towards unfavourable conditions occurring in mass production. To this end, current understanding on the mechanisms of uptake and localization of CNTs in plant cells is discussed. The available ecotoxicological data were used in an attempt to assess the feasibility of CNT-based applications in algal biotechnology, by critically correlating the experimental conditions with the observed adverse effects. Furthermore, main structural and physicochemical properties of single- and multi-walled CNTs and common approaches for the functionalization and characterization of CNTs in biological environment are presented. Here, we explore the potential that nanotechnology can offer to enhance functions of algae, paving the way for a more efficient use of photosynthetic algal systems in the sustainable production of energy, biomass and high-value compounds.


Assuntos
Biotecnologia/métodos , Nanotecnologia/métodos , Nanotubos de Carbono
13.
Hepatol Int ; 18(2): 568-581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37142825

RESUMO

BACKGROUND AND PURPOSE: While HCC is an inflammation-associated cancer, CRLM develops on permissive healthy liver microenvironment. To evaluate the immune aspects of these two different environments, peripheral blood-(PB), peritumoral-(PT) and tumoral tissues-(TT) from HCC and CRLM patients were evaluated. METHODS: 40 HCC and 34 CRLM were enrolled and freshly TT, PT and PB were collected at the surgery. PB-, PT- and TT-derived CD4+CD25+ Tregs, M/PMN-MDSC and PB-derived CD4+CD25- T-effector cells (Teffs) were isolated and characterized. Tregs' function was also evaluated in the presence of the CXCR4 inhibitor, peptide-R29, AMD3100 or anti-PD1. RNA was extracted from PB/PT/TT tissues and tested for FOXP3, CXCL12, CXCR4, CCL5, IL-15, CXCL5, Arg-1, N-cad, Vim, CXCL8, TGFß and VEGF-A expression. RESULTS: In HCC/CRLM-PB, higher number of functional Tregs, CD4+CD25hiFOXP3+ was detected, although PB-HCC Tregs exert a more suppressive function as compared to CRLM Tregs. In HCC/CRLM-TT, Tregs were highly represented with activated/ENTPD-1+Tregs prevalent in HCC. As compared to CRLM, HCC overexpressed CXCR4 and N-cadherin/vimentin in a contest rich in arginase and CCL5. Monocytic MDSCs were highly represented in HCC/CRLM, while high polymorphonuclear MDSCs were detected only in HCC. Interestingly, the function of CXCR4-PB-Tregs was impaired in HCC/CRLM by the CXCR4 inhibitor R29. CONCLUSION: In HCC and CRLM, peripheral blood, peritumoral and tumoral tissues Tregs are highly represented and functional. Nevertheless, HCC displays a more immunosuppressive TME due to Tregs, MDSCs, intrinsic tumor features (CXCR4, CCL5, arginase) and the contest in which it develops. As CXCR4 is overexpressed in HCC/CRLM tumor/TME cells, CXCR4 inhibitors may be considered for double hit therapy in liver cancer patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Microambiente Tumoral , Arginase/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
14.
Crit Rev Food Sci Nutr ; 53(2): 198-213, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23072533

RESUMO

In recent years, both food quality and its effect on human health have become a fundamental issue all over the world. As a consequence of this new and increased awareness, American, European, and Asian policymakers have strongly encouraged the research programs on food quality and safety thematic. Attempts to improve human health and to satisfy people's desire for healthcare without intake of pharmaceuticals, has led the food industry to focus attention on functional or nutraceutical food. For a long time, compounds with nutraceutical activity have been produced chemically, but the new demands for a sustainable life have gradually led the food industry to move towards natural compounds, mainly those derived from plants. Many phytochemicals are known to promote good health, but, sometimes, undesirable effects are also reported. Furthermore, several products present on the market show few benefits and sometimes even the reverse - unhealthy effects; the evidence of efficacy is often unconvincing and epidemiological studies are necessary to prove the truth of their claims. Therefore, there is a need for reliable analytical control systems to measure the bioactivity, content, and quality of these additives in the complex food matrix. This review describes the most widespread nutraceutics and an analytical control of the same using recently developed biosensors which are promising candidates for routine control of functional foods.


Assuntos
Suplementos Nutricionais/efeitos adversos , Suplementos Nutricionais/análise , Plantas Comestíveis/química , Animais , Capsaicina/efeitos adversos , Carotenoides/efeitos adversos , Cisteína/efeitos adversos , Cisteína/análogos & derivados , Gorduras Insaturadas na Dieta , Dissulfetos , Ácidos Graxos Insaturados/efeitos adversos , Alimento Funcional/análise , Glucosinolatos/efeitos adversos , Humanos , Política Nutricional , Fenóis/efeitos adversos , Fitoestrógenos/efeitos adversos , Polifenóis/administração & dosagem , Polifenóis/efeitos adversos , Ácidos Sulfínicos/efeitos adversos
15.
Phys Chem Chem Phys ; 15(31): 13108-15, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23824019

RESUMO

The plastoquinone (Q(B)) binding niche of the Photosystem II (PSII) D1 protein is the subject of intense research due to its capability to bind also anthropogenic pollutants. In this work, the Chlamydomonas reinhardtii D1 primary structure was used as a template to computationally design novel peptides enabling the binding of the herbicide atrazine. Three biomimetic molecules, containing the Q(B)-binding site in a loop shaped by two α-helices, were reconstituted by automated protein synthesis, and their structural and functional features deeply analysed by biophysical techniques. Standing out among the others, the biomimetic mutant peptide, D1pepMut, showed high ability to mimic the D1 protein in binding both Q(B) and atrazine. Circular dichroism spectra suggested a typical properly-folded α-helical structure, while isothermal titration calorimetry (ITC) provided a complete thermodynamic characterization of the molecular interaction. Atrazine binds to the D1pepMut with a high affinity (Kd = 2.84 µM), and a favourable enthalpic contribution (ΔH = -11.9 kcal mol(-1)) driving the interaction. Fluorescence spectroscopy assays, in parallel to ITC data, provided hyperbolic titration curves indicating the occurrence of a single atrazine binding site. The binding resulted in structural stabilisation of the D1pepMut molecule, as suggested by atrazine-induced cooperative profiles for the fold-unfold transition. The interaction dynamics and the structural stability of the peptides in response to the ligand were particularly considered as mandatory parameters for biosensor/biochip development. These studies paved the way to the set-up of an array of synthetic mutant peptides with a wide range of affinity towards different classes of target analytes, for the development of optical nanosensing platforms for herbicide detection.


Assuntos
Atrazina/química , Chlamydomonas reinhardtii/química , Peptídeos/química , Peptídeos/síntese química , Plastoquinona/química , Sítios de Ligação , Técnicas Biossensoriais
16.
Materials (Basel) ; 16(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37444835

RESUMO

In the quest to find powerful modifiers of screen-printed electrodes for sensing applications, a set of rare earth-doped Ca10-xREx(PO4)6(OH)2 (RE = La, Nd, Sm, Eu, Dy, and Tm and x = 0.01, 0.02, 0.10, and 0.20) hydroxyapatite (HAp) samples were subjected to an in-depth electrochemical characterization using electrochemical impedance spectroscopy and cyclic and square wave voltammetry. Among all of these, the inorganic phosphates doped with lanthanum proved to be the most reliable, revealing robust analytical performances in terms of sensitivity, repeatability, reproducibility, and reusability, hence paving the way for their exploitation in sensing applications. Structural data on La-doped HAp samples were also provided by using different techniques, including optical microscopy, X-ray diffraction, Rietveld refinement from X-ray data, Fourier transform infrared, and Raman vibrational spectroscopies, to complement the electrochemical characterization.

17.
Langmuir ; 28(37): 13405-10, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22891813

RESUMO

The tau protein belongs to the category of Intrinsically Disordered Proteins (IDP), which in their native state lack a folded structure and fluctuate between many conformations. In its physiological state, tau helps nucleating and stabilizing the microtubules' (MTs) surfaces in the axons of the neurons. Tau is mainly composed by two domains: (i) the binding domain that tightly bounds the MT surfaces and (ii) the projection domain that exerts a long-range entropic repulsive force and thus provides the proper spacing between adjacent MTs. Tau is also involved in the genesis and in the development of the Alzheimer disease when it detaches from MT surfaces and aggregates in paired helical filaments. Unfortunately, the molecular mechanisms behind these phenomena are still unclear. Temperature variation, rarely considered in biological studies, is here used to provide structural information on tau correlated to its role as an entropic spacer between adjacent MTs surfaces. In this paper, by means of small-angle X-ray scattering and molecular dynamics simulation, we demonstrate that tau undergoes a counterintuitive collapse phenomenon with increasing temperature. A detailed analysis of our results, performed by the Ensemble Optimization Method, shows that the thermal collapse is coupled to the occurrence of a transient long-range contact between a region encompassing the end of the proline-rich domain P2 and the first part of the repeats domain, and the region of the N-terminal domain entailing residues 80-150. Interestingly these two regions involved in the tau temperature collapse belong to the flexible projection domain that acts as an entropic bristle and regulates the MTs' architecture. Our results show that temperature is an important parameter that influences the dynamics of the tau projection domain, and hence its entropic behavior.


Assuntos
Entropia , Temperatura , Proteínas tau/química , Adsorção , Humanos , Simulação de Dinâmica Molecular , Propriedades de Superfície
18.
Biomolecules ; 13(1)2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36671418

RESUMO

Acute respiratory distress syndrome (ARDS) is a serious inflammatory lung disorder and a complication of SARS-CoV-2 infection. In patients with severe SARS-CoV-2 infection, the transition to ARDS is principally due to the occurrence of a cytokine storm and an exacerbated inflammatory response. The effectiveness of ultra-micronized palmitoylethanolamide (PEA-um) during the earliest stage of COVID-19 has already been suggested. In this study, we evaluated its protective effects as well as the effectiveness of its congener, 2-pentadecyl-2-oxazoline (PEA-OXA), using in vitro models of acute lung injury. In detail, human lung epithelial cells (A549) activated by polyinosinic-polycytidylic acid (poly-(I:C)) or Transforming Growth Factor-beta (TGF-ß) were treated with PEA-OXA or PEA. The release of IL-6 and the appearance of Epithelial-Mesenchymal Transition (EMT) were measured by ELISA and immunofluorescence assays, respectively. A possible mechanism of action for PEA-OXA and PEA was also investigated. Our results showed that both PEA-OXA and PEA were able to counteract poly-(I:C)-induced IL-6 release, as well as to revert TGF-ß-induced EMT. In addition, PEA was able to produce an "entourage" effect on the levels of the two endocannabinoids AEA and 2-AG, while PEA-OXA only increased PEA endogenous levels, in poly-(I:C)-stimulated A549 cells. These results evidence for the first time the superiority of PEA-OXA over PEA in exerting protective effects and point to PEA-OXA as a new promising candidate in the management of acute lung injury.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Humanos , Interleucina-6 , SARS-CoV-2 , Fator de Crescimento Transformador beta , Lesão Pulmonar Aguda/tratamento farmacológico
19.
Br J Pharmacol ; 179(8): 1753-1768, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34825370

RESUMO

BACKGROUND AND PURPOSE: Airway remodelling is a critical feature of chronic lung diseases. Epithelial-mesenchymal transition (EMT) represents an important source of myofibroblasts, contributing to airway remodelling. Here, we investigated the sphingosine-1-phosphate (S1P) role in EMT and its involvement in asthma-related airway dysfunction. EXPERIMENTAL APPROACH: A549 cells were used to assess the S1P effect on EMT and its interaction with TGF-ß signalling. To assess the S1P role in vivo and its impact on lung function, two experimental models of asthma were used by exposing BALB/c mice to subcutaneous administration of either S1P or ovalbumin (OVA). KEY RESULTS: Following incubation with TGF-ß or S1P, A549 acquire a fibroblast-like morphology associated with an increase of mesenchymal markers and down-regulation of the epithelial. These effects are reversed by treatment with the TGF-ß receptor antagonist LY2109761. Systemic administration of S1P to BALB/c mice induces asthma-like disease characterized by mucous cell metaplasia and increased levels of TGF-ß, IL-33 and FGF-2 within the lung. The bronchi harvested from S1P-treated mice display bronchial hyperresponsiveness associated with overexpression of the mesenchymal and fibrosis markers and reduction of the epithelial.The S1P-induced switch from the epithelial toward the mesenchymal pattern correlates to a significant increase of lung resistance and fibroblast activation. TGF-ß blockade, in S1P-treated mice, abrogates these effects. Finally, inhibition of sphingosine kinases by SK1-II in OVA-sensitized mice, abrogates EMT, pulmonary TGF-ß up-regulation, fibroblasts recruitment and airway hyperresponsiveness. CONCLUSION AND IMPLICATIONS: Targeting S1P/TGF-ß axis may hold promise as a feasible therapeutic target to control airway dysfunction in asthma.


Assuntos
Asma , Transição Epitelial-Mesenquimal , Esfingosina , Fator de Crescimento Transformador beta , Remodelação das Vias Aéreas , Animais , Asma/metabolismo , Asma/patologia , Células Epiteliais , Lisofosfolipídeos , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1
20.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35246475

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most prevalent and deadly tumors worldwide. The majority of CRC is resistant to anti-programmed cell death-1 (PD-1)-based cancer immunotherapy, with approximately 15% with high-microsatellite instability, high tumor mutation burden, and intratumoral lymphocytic infiltration. Programmed death-ligand 1 (PD-L1)/PD-1 signaling was described in solid tumor cells. In melanoma, liver, and thyroid cancer cells, intrinsic PD-1 signaling activates oncogenic functions, while in lung cancer cells, it has a tumor suppressor effect. Our work aimed to evaluate the effects of the anti-PD-1 nivolumab (NIVO) on CRC cells. METHODS: In vitro NIVO-treated human colon cancer cells (HT29, HCT116, and LoVo) were evaluated for cell growth, chemo/radiotherapeutic sensitivity, apoptosis, and spheroid growth. Total RNA-seq was assessed in 6-24 hours NIVO-treated human colon cancer cells HT29 and HCT116 as compared with NIVO-treated PES43 human melanoma cells. In vivo mice carrying HT29 xenograft were intraperitoneally treated with NIVO, OXA (oxaliplatin), and NIVO+OXA, and the tumors were characterized for growth, apoptosis, and pERK1/2/pP38. Forty-eight human primary colon cancers were evaluated for PD-1 expression through immunohistochemistry. RESULTS: In PD-1+ human colon cancer cells, intrinsic PD-1 signaling significantly decreased proliferation and promoted apoptosis. On the contrary, NIVO promoted proliferation, reduced apoptosis, and protected PD-1+ cells from chemo/radiotherapy. Transcriptional profile of NIVO-treated HT29 and HCT116 human colon cancer cells revealed downregulation of BATF2, DRAM1, FXYD3, IFIT3, MT-TN, and TNFRSF11A, and upregulation of CLK1, DCAF13, DNAJC2, MTHFD1L, PRPF3, PSMD7, and SCFD1; the opposite regulation was described in NIVO-treated human melanoma PES43 cells. Differentially expressed genes (DEGs) were significantly enriched for interferon pathway, innate immune, cytokine-mediated signaling pathways. In vivo, NIVO promoted HT29 tumor growth, thus reducing OXA efficacy as revealed through significant Ki-67 increase, pERK1/2 and pP38 increase, and apoptotic cell reduction. Eleven out of 48 primary human colon cancer biopsies expressed PD-1 (22.9%). PD-1 expression is significantly associated with lower pT stage. CONCLUSIONS: In PD-1+ human colon cancer cells, NIVO activates tumor survival pathways and could protect tumor cells from conventional therapies.


Assuntos
Neoplasias do Colo , Melanoma , Animais , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Humanos , Melanoma/tratamento farmacológico , Proteínas de Membrana/uso terapêutico , Camundongos , Proteínas de Neoplasias , Nivolumabe/farmacologia , Nivolumabe/uso terapêutico , Receptor de Morte Celular Programada 1/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA