Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38037470

RESUMO

Even though deficits in social cognition constitute a core characteristic of autism spectrum disorders, a large heterogeneity exists regarding individual social performances and its neural basis remains poorly investigated. Here, we used eye-tracking to objectively measure interindividual variability in social perception and its correlation with white matter microstructure, measured with diffusion tensor imaging MRI, in 25 children with autism spectrum disorder (8.5 ± 3.8 years). Beyond confirming deficits in social perception in participants with autism spectrum disorder compared 24 typically developing controls (10.5 ± 2.9 years), results revealed a large interindividual variability of such behavior among individuals with autism spectrum disorder. Whole-brain analysis showed in both autism spectrum disorder and typically developing groups a positive correlation between number of fixations to the eyes and fractional anisotropy values mainly in right and left superior longitudinal tracts. In children with autism spectrum disorder a correlation was also observed in right and left inferior longitudinal tracts. Importantly, a significant interaction between group and number of fixations to the eyes was observed within the anterior portion of the right inferior longitudinal fasciculus, mainly in the right anterior temporal region. This additional correlation in a supplementary region suggests the existence of a compensatory brain mechanism, which may support enhanced performance in social perception among children with autism spectrum disorder.


Assuntos
Transtorno do Espectro Autista , Substância Branca , Criança , Humanos , Imagem de Tensor de Difusão/métodos , Transtorno do Espectro Autista/diagnóstico por imagem , Tecnologia de Rastreamento Ocular , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem , Percepção Social , Anisotropia
2.
Environ Res ; 250: 118443, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365053

RESUMO

Externalizing disorders, such as attention-deficit/hyperactivity disorder (ADHD), account for the majority of the child/adolescent referrals to mental health services and increase risk for later-life psychopathology. Although the expression of externalizing disorders is more common among males, few studies have addressed how sex modifies associations between metal exposure and adolescent externalizing symptoms. This study aimed to examine sex-specific associations between co-exposure to multiple metals and externalizing symptoms in adolescence and young adulthood. Among 150 adolescents and young adults (55% female, ages: 15-25 years) enrolled in the Public Health Impact of Metals Exposure (PHIME) study in Brescia, Italy, we measured five metals (manganese (Mn), lead (Pb), copper (Cu), chromium (Cr), nickel (Ni)) in four biological matrices (blood, urine, hair, and saliva). Externalizing symptoms were assessed using the Achenbach System of Empirically Based Assessment (ASEBA) Youth Self-Report (YSR) or Adult Self Report (ASR). Using generalized weighted quantile sum (WQS) regression, we investigated the moderating effect of sex (i.e., assigned at birth) on associations between the joint effect of exposure to the metal mixture and externalizing symptoms, adjusting for age and socioeconomic status. We observed that metal mixture exposure was differentially associated with aggressive behavior in males compared to females (ß = -0.058, 95% CI [-0.126, -0.009]). In males, exposure was significantly associated with more externalizing problems, and aggressive and intrusive behaviors, driven by Pb, Cu and Cr. In females, exposure was not significantly associated with any externalizing symptoms. These findings suggest that the effect of metal exposure on externalizing symptoms differs in magnitude between the sexes, with males being more vulnerable to increased externalizing symptoms following metal exposure. Furthermore, our findings support the hypothesis that sex-specific vulnerabilities to mixed metal exposure during adolescence/young adulthood may play a role in sex disparities observed in mental health disorders, particularly those characterized by externalizing symptoms.


Assuntos
Exposição Ambiental , Humanos , Adolescente , Feminino , Masculino , Adulto Jovem , Adulto , Itália/epidemiologia , Fatores Sexuais , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Metais/toxicidade , Metais Pesados/toxicidade , Transtorno do Deficit de Atenção com Hiperatividade/induzido quimicamente , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia
3.
Environ Sci Technol ; 57(46): 18139-18150, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37595051

RESUMO

A growing body of literature suggests that developmental exposure to individual or mixtures of environmental chemicals (ECs) is associated with autism spectrum disorder (ASD). However, investigating the effect of interactions among these ECs can be challenging. We introduced a combination of the classical exposure-mixture Weighted Quantile Sum (WQS) regression and a machine-learning method termed Signed iterative Random Forest (SiRF) to discover synergistic interactions between ECs that are (1) associated with higher odds of ASD diagnosis, (2) mimic toxicological interactions, and (3) are present only in a subset of the sample whose chemical concentrations are higher than certain thresholds. In a case-control Childhood Autism Risks from Genetics and Environment (CHARGE) study, we evaluated multiordered synergistic interactions among 62 ECs measured in the urine samples of 479 children in association with increased odds for ASD diagnosis (yes vs no). WQS-SiRF identified two synergistic two-ordered interactions between (1) trace-element cadmium (Cd) and the organophosphate pesticide metabolite diethyl-phosphate (DEP); and (2) 2,4,6-trichlorophenol (TCP-246) and DEP. Both interactions were suggestively associated with increased odds of ASD diagnosis in the subset of children with urinary concentrations of Cd, DEP, and TCP-246 above the 75th percentile. This study demonstrates a novel method that combines the inferential power of WQS and the predictive accuracy of machine-learning algorithms to discover potentially biologically relevant chemical-chemical interactions associated with ASD.


Assuntos
Transtorno do Espectro Autista , Praguicidas , Oligoelementos , Criança , Humanos , Fenóis , Cádmio
4.
Cerebellum ; 19(1): 58-67, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31732920

RESUMO

Posterior fossa arachnoid cysts (PFAC) may produce not only neurological symptoms but also other symptoms still poorly understood such as behavioral and learning deficits, awkwardness, and difficulties in social interaction. These subtle social impairments have not been formally described and their underlying brain mechanisms remain unknown. In the present case-control study, we aimed to empirically characterize social impairments in a pediatric population with PFAC using eye tracking. In addition, we investigated putative functional cortical abnormalities in these children using arterial spin labeling magnetic resonance imaging. Overall, 15 patients with PFAC (3f, age = 9.4 ± 4 years) and 43 typically developing volunteer children (16f, age = 9.3 ± 3.6 years) were enrolled in this study. Eye tracking was used to record gaze patterns during visualization of social interaction scenes. Viewing times to faces of characters and non-social background were analyzed. A voxel-wise whole-brain analysis was performed to investigate rest cerebral blood flow (CBF) abnormalities. Significantly reduced viewing time to faces was observed in patients compared with controls (p < 0.01). A ROC curve analysis revealed that 30% of PFAC patients presented viewing time to the face lower than the cutoff, while none of the controls did. The whole-brain analysis revealed a significant decrease in rest CBF in PFAC patients compared with controls bilaterally in the superior temporal gyrus and the temporoparietal junction (TPJ) (p < 0.05 FWE). These results suggest that early life PFAC may have an impact on functional activity of the temporal lobe, which could be associated with social perception deficits.


Assuntos
Cistos Aracnóideos/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Fossa Craniana Posterior/diagnóstico por imagem , Movimentos Oculares/fisiologia , Descanso/fisiologia , Percepção Social , Adolescente , Cistos Aracnóideos/psicologia , Criança , Pré-Escolar , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Estimulação Luminosa/métodos , Descanso/psicologia
5.
Cereb Cortex ; 26(6): 2823-31, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26946130

RESUMO

Processing eye-gaze information is a key step to human social interaction. Neuroimaging studies have shown that superior temporal sulcus (STS) is highly implicated in eye-gaze perception. In autism, a lack of preference for the eyes, as well as anatomo-functional abnormalities within the STS, has been described. To date, there are no experimental data in humans showing whether it is possible to interfere with eye-gaze processing by modulating STS neural activity. Here, we measured eye-gaze perception before and after inhibitory transcranial magnetic stimulation (TMS) applied over the posterior STS (pSTS) in young healthy volunteers. Eye-gaze processing, namely overt orienting toward the eyes, was measured using eye tracking during passive visualization of social movies. Inhibition of the right pSTS led participants to look less to the eyes of characters during visualization of social movies. Such effect was specific for the eyes and was not observed after inhibition of the left pSTS nor after placebo TMS. These results indicate for the first time that interfering with the right pSTS neural activity transitorily disrupts the behavior of orienting toward the eyes and thus indirectly gaze perception, a fundamental process for human social cognition. These results could open up new perspectives in therapeutic interventions in autism.


Assuntos
Fixação Ocular , Percepção Social , Lobo Temporal/fisiologia , Percepção Visual/fisiologia , Cognição/fisiologia , Medições dos Movimentos Oculares , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Inibição Neural , Lobo Temporal/diagnóstico por imagem , Estimulação Magnética Transcraniana , Adulto Jovem
6.
Artigo em Inglês | MEDLINE | ID: mdl-38802534

RESUMO

BACKGROUND: Metal exposures can adversely impact olfactory function. Few studies have examined this association in children. Further, metal exposure occurs as a mixture, yet previous studies of metal-associated olfactory dysfunction only examined individual metals. Preventing olfactory dysfunctions can improve quality of life and prevent neurodegenerative diseases with long-term health implications. OBJECTIVE: We aimed to test the association between exposure to a mixture of 12 metals measured in environmental sources and olfactory function among children and adolescents residing in the industrialized province of Brescia, Italy. METHODS: We enrolled 130 children between 6 and 13 years old (51.5% females) and used the "Sniffin' Sticks" test to measure olfactory performance in identifying smells. We used a portable X-ray fluorescence instrument to determine concentrations of metals (arsenic (As), calcium, cadmium (Cd), chromium, copper, iron, manganese, lead (Pb), antimony, titanium, vanadium and zinc) in outdoor and indoor deposited dust and soil samples collected from participants' households. We used an extension of weighted quantile sum (WQS) regression to test the association between exposure to metal mixtures in multiple environmental media and olfactory function adjusting for age, sex, socio-economic status, intelligence quotient and parents' smoking status. RESULTS: A higher multi-source mixture was significantly associated with a reduced Sniffin' Sticks identification score (ß = -0.228; 95% CI -0.433, -0.020). Indoor dust concentrations of Pb, Cd and As provided the strongest contributions to this association (13.8%, 13.3% and 10.1%, respectively). The metal mixture in indoor dust contributed more (for 8 metals out of 12) to the association between metals and olfactory function compared to soil or outdoor dust. IMPACT STATEMENT: Among a mixture of 12 metals measured in three different environmental sources (soil, outdoor and indoor dust), we identified Pb, Cd and As measured in indoor dust as the main contributors to reduced olfactory function in children and adolescents residing in an industrialized area. Exposure to indoor pollution can be effectively reduced through individual and public health interventions allowing to prevent the deterioration of olfactory functions. Moreover, the identification of the factors that can deteriorate olfactory functions can be a helpful instrument to improve quality of life and prevent neurodegenerative diseases as long-term health implications.

7.
Res Sq ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168216

RESUMO

In the aftermath of the World Trade Center (WTC) attack, rescue and recovery workers faced hazardous conditions and toxic agents. Prior research linked these exposures to adverse health effects, but mainly examined individual factors, overlooking complex mixture effects. This study applies an exposomic approach encompassing the totality of responders' experience, defined as the WTC exposome. We analyzed data from 34,096 members of the WTC Health Program General Responder, including mental and physical health, occupational history, traumatic and environmental exposures using generalized weighted quantile sum regression. We find a significant association between the exposure mixture index all investigated health outcomes. Factors identified as risk factors include working in an enclosed heavily contaminated area, construction occupation, and exposure to blood and body fluids. Conversely, full-time employment emerged as a protective factor. This exposomics study emphasizes the importance of considering combined exposures. In an era marked by more frequent and severe natural disasters due to the evolving climate crisis, the exposomic framework holds promise as a valuable tool for disaster preparedness.

8.
medRxiv ; 2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37503251

RESUMO

Coronavirus disease 2019 (COVID-19) has been associated with brain functional, structural, and cognitive changes that persist months after infection. Most studies of the neurologic outcomes related to COVID-19 focus on severe infection and aging populations. Here, we investigated the neural activities underlying COVID-19 related outcomes in a case-control study of mildly infected youth enrolled in a longitudinal study in Lombardy, Italy, a global hotspot of COVID-19. All participants (13 cases, 27 controls, mean age 24 years) completed resting state functional (fMRI), structural MRI, cognitive assessments (CANTAB spatial working memory) at baseline (pre-COVID) and follow-up (post-COVID). Using graph theory eigenvector centrality (EC) and data-driven statistical methods, we examined differences in ECdelta (i.e., the difference in EC values pre- and post-COVID-19) and volumetricdelta (i.e., the difference in cortical volume of cortical and subcortical areas pre- and post-COVID) between COVID-19 cases and controls. We found that ECdeltasignificantly between COVID-19 and healthy participants in five brain regions; right intracalcarine cortex, right lingual gyrus, left hippocampus, left amygdala, left frontal orbital cortex. The left hippocampus showed a significant decrease in volumetricdelta between groups (p=0.041). The reduced ECdelta in the right amygdala associated with COVID-19 status mediated the association between COVID-19 and disrupted spatial working memory. Our results show persistent structural, functional and cognitive brain changes in key brain areas associated with olfaction and cognition. These results may guide treatment efforts to assess the longevity, reversibility and impact of the observed brain and cognitive changes following COVID-19.

9.
Transl Psychiatry ; 13(1): 239, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37429850

RESUMO

World Trade Center (WTC) responders exposed to traumatic and environmental stressors during rescue and recovery efforts have a high prevalence of chronic WTC-related post-traumatic stress disorder (WTC-PTSD). We investigated neural mechanisms underlying WTC-PTSD by applying eigenvector centrality (EC) metrics and data-driven methods on resting state functional magnetic resonance (fMRI). We identified how EC differences relate to WTC-exposure and behavioral symptoms. We found that connectivity differentiated significantly between WTC-PTSD and non-PTSD responders in nine brain regions, as these differences allowed an effective discrimination of PTSD and non-PTSD responders based solely on analysis of resting state data. Further, we found that WTC exposure duration (months on site) moderates the association between PTSD and EC values in two of the nine brain regions; the right anterior parahippocampal gyrus and the left amygdala (p = 0.010; p = 0.005, respectively, adjusted for multiple comparisons). Within WTC-PTSD, a dimensional measure of symptom severity was positively associated with EC values in the right anterior parahippocampal gyrus and brainstem. Functional neuroimaging can provide effective tools to identify neural correlates of diagnostic and dimensional indicators of PTSD.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Tonsila do Cerebelo/diagnóstico por imagem , Tronco Encefálico , Neuroimagem Funcional
10.
bioRxiv ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205412

RESUMO

The assessment of resting state (rs) neurophysiological dynamics relies on the control of sensory, perceptual, and behavioral environments to minimize variability and rule-out confounding sources of activation during testing conditions. Here, we investigated how temporally-distal environmental inputs, specifically metal exposures experienced up to several months prior to scanning, affect functional dynamics measured using rs functional magnetic resonance imaging (rs-fMRI). We implemented an interpretable XGBoost-Shapley Additive Explanation (SHAP) model that integrated information from multiple exposure biomarkers to predict rs dynamics in typically developing adolescents. In 124 participants (53% females, ages: 13-25 years) enrolled in the Public Health Impact of Metals Exposure (PHIME) study, we measured concentrations of six metals (manganese, lead, chromium, cupper, nickel and zinc) in biological matrices (saliva, hair, fingernails, toenails, blood and urine) and acquired rs-fMRI scans. Using graph theory metrics, we computed global efficiency (GE) in 111 brain areas (Harvard Oxford Atlas). We used a predictive model based on ensemble gradient boosting to predict GE from metal biomarkers, adjusting for age and biological sex. Model performance was evaluated by comparing predicted versus measured GE. SHAP scores were used to evaluate feature importance. Measured versus predicted rs dynamics from our model utilizing chemical exposures as inputs were significantly correlated ( p < 0.001, r = 0.36). Lead, chromium, and copper contributed most to the prediction of GE metrics. Our results indicate that a significant component of rs dynamics, comprising approximately 13% of observed variability in GE, is driven by recent metal exposures. These findings emphasize the need to estimate and control for the influence of past and current chemical exposures in the assessment and analysis of rs functional connectivity.

11.
Front Comput Neurosci ; 17: 1302010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260714

RESUMO

Introduction: The assessment of resting state (rs) neurophysiological dynamics relies on the control of sensory, perceptual, and behavioral environments to minimize variability and rule-out confounding sources of activation during testing conditions. Here, we investigated how temporally-distal environmental inputs, specifically metal exposures experienced up to several months prior to scanning, affect functional dynamics measured using rs functional magnetic resonance imaging (rs-fMRI). Methods: We implemented an interpretable XGBoost-shapley additive explanation (SHAP) model that integrated information from multiple exposure biomarkers to predict rs dynamics in typically developing adolescents. In 124 participants (53% females, ages, 13-25 years) enrolled in the public health impact of metals exposure (PHIME) study, we measured concentrations of six metals (manganese, lead, chromium, copper, nickel, and zinc) in biological matrices (saliva, hair, fingernails, toenails, blood, and urine) and acquired rs-fMRI scans. Using graph theory metrics, we computed global efficiency (GE) in 111 brain areas (Harvard Oxford atlas). We used a predictive model based on ensemble gradient boosting to predict GE from metal biomarkers, adjusting for age and biological sex. Results: Model performance was evaluated by comparing predicted versus measured GE. SHAP scores were used to evaluate feature importance. Measured versus predicted rs dynamics from our model utilizing chemical exposures as inputs were significantly correlated (p < 0.001, r = 0.36). Lead, chromium, and copper contributed most to the prediction of GE metrics. Discussion: Our results indicate that a significant component of rs dynamics, comprising approximately 13% of observed variability in GE, is driven by recent metal exposures. These findings emphasize the need to estimate and control for the influence of past and current chemical exposures in the assessment and analysis of rs functional connectivity.

12.
Front Neurosci ; 17: 1098441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814793

RESUMO

Introduction: Adolescent exposure to neurotoxic metals adversely impacts cognitive, motor, and behavioral development. Few studies have addressed the underlying brain mechanisms of these metal-associated developmental outcomes. Furthermore, metal exposure occurs as a mixture, yet previous studies most often consider impacts of each metal individually. In this cross-sectional study, we investigated the relationship between exposure to neurotoxic metals and topological brain metrics in adolescents. Methods: In 193 participants (53% females, ages: 15-25 years) enrolled in the Public Health Impact of Metals Exposure (PHIME) study, we measured concentrations of four metals (manganese, lead, copper, and chromium) in multiple biological media (blood, urine, hair, and saliva) and acquired resting-state functional magnetic resonance imaging scans. Using graph theory metrics, we computed global and local efficiency (global:GE; local:LE) in 111 brain areas (Harvard Oxford Atlas). We used weighted quantile sum (WQS) regression models to examine association between metal mixtures and each graph metric (GE or LE), adjusted for sex and age. Results: We observed significant negative associations between the metal mixture and GE and LE [ßGE = -0.076, 95% CI (-0.122, -0.031); ßLE= -0.051, 95% CI (-0.095, -0.006)]. Lead and chromium measured in blood contributed most to this association for GE, while chromium measured in hair contributed the most for LE. Discussion: Our results suggest that exposure to this metal mixture during adolescence reduces the efficiency of integrating information in brain networks at both local and global levels, informing potential neural mechanisms underlying the developmental toxicity of metals. Results further suggest these associations are due to combined joint effects to different metals, rather than to a single metal.

13.
Biol Psychiatry Glob Open Sci ; 3(3): 460-469, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37519473

RESUMO

Background: Early-life environmental exposures during critical windows (CWs) of development can impact life course health. Exposure to neuroactive metals such as manganese (Mn) during prenatal and early postnatal CWs may disrupt typical brain development, leading to persistent behavioral changes. Males and females may be differentially vulnerable to Mn, presenting distinctive CWs to Mn exposure. Methods: We used magnetic resonance imaging to investigate sex-specific associations between early-life Mn uptake and intrinsic functional connectivity in adolescence. A total of 71 participants (15-23 years old; 53% female) from the Public Health Impact of Manganese Exposure study completed a resting-state functional magnetic resonance imaging scan. We estimated dentine Mn concentrations at prenatal, postnatal, and early childhood periods using laser ablation-inductively coupled plasma-mass spectrometry. We performed seed-based correlation analyses to investigate the moderating effect of sex on the associations between Mn and intrinsic functional connectivity adjusting for age and socioeconomic status. Results: We identified significant sex-specific associations between dentine Mn at all time points and intrinsic functional connectivity in brain regions involved in cognitive and motor function: 1) prenatal: dorsal striatum, occipital/frontal lobes, and middle frontal gyrus; 2) postnatal: right putamen and cerebellum; and 3) early childhood: putamen and occipital, frontal, and temporal lobes. Network associations differed depending on exposure timing, suggesting that different brain networks may present distinctive CWs to Mn. Conclusions: These findings suggest that the developing brain is vulnerable to Mn exposure, with effects lasting through late adolescence, and that females and males are not equally vulnerable to these effects. Future studies should investigate cognitive and motor outcomes related to these associations.

14.
Artigo em Inglês | MEDLINE | ID: mdl-36554375

RESUMO

Social isolation affects our emotions, behavior and interactions. Worldwide, individuals experienced prolonged periods of isolation during the first wave of the COVID-19 pandemic when authorities-imposed restrictions to reduce the spread of the virus. In this study, we investigated the effects of social isolation on emotional and behavioral outcomes in young adults from Lombardy, Italy, a global hotspot of COVID-19. We leveraged baseline (pre-social isolation) and follow-up (mid- or post-isolation) data collected from young adults enrolled in the ongoing, longitudinal Public Health Impact of Metals Exposure (PHIME) study. At baseline, 167 participants completed the ASEBA questionnaires (ASR/YSR) by web link or in person; 65 completed the ASR 12-18 weeks after the onset of restrictions. Using the sign test and multiple linear regression models, we examined differences in ASR scores between baseline and follow-up adjusting for sex, age, pre-pandemic IQ and time with social restrictions (weeks). Further, we examined interactions between sex and time in social isolation. Participants completed the ASR after spending an average of 14 weeks in social isolation (range 12-18 weeks). Thought problems increased between baseline and follow-up (median difference 1.0; 1st, 3rd quartile: -1.0, 4.0; p = 0.049). Among males, a longer time in social isolation (≥14 weeks) was associated with increased rule-breaking behaviors of 2.8 points. These results suggest the social isolation related to COVID-19 adversely impacted mental health. In particular, males seem to externalize their condition. These findings might help future interventions and treatment to minimize the consequences of social isolation experience in young adults.


Assuntos
COVID-19 , Pandemias , Masculino , Adulto Jovem , Humanos , COVID-19/epidemiologia , Isolamento Social , Emoções , Itália/epidemiologia
15.
Sci Rep ; 10(1): 21545, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298991

RESUMO

Timely and effective clinical decision-making for COVID-19 requires rapid identification of risk factors for disease outcomes. Our objective was to identify characteristics available immediately upon first clinical evaluation related COVID-19 mortality. We conducted a retrospective study of 8770 laboratory-confirmed cases of SARS-CoV-2 from a network of 53 facilities in New-York City. We analysed 3 classes of variables; demographic, clinical, and comorbid factors, in a two-tiered analysis that included traditional regression strategies and machine learning. COVID-19 mortality was 12.7%. Logistic regression identified older age (OR, 1.69 [95% CI 1.66-1.92]), male sex (OR, 1.57 [95% CI 1.30-1.90]), higher BMI (OR, 1.03 [95% CI 1.102-1.05]), higher heart rate (OR, 1.01 [95% CI 1.00-1.01]), higher respiratory rate (OR, 1.05 [95% CI 1.03-1.07]), lower oxygen saturation (OR, 0.94 [95% CI 0.93-0.96]), and chronic kidney disease (OR, 1.53 [95% CI 1.20-1.95]) were associated with COVID-19 mortality. Using gradient-boosting machine learning, these factors predicted COVID-19 related mortality (AUC = 0.86) following cross-validation in a training set. Immediate, objective and culturally generalizable measures accessible upon clinical presentation are effective predictors of COVID-19 outcome. These findings may inform rapid response strategies to optimize health care delivery in parts of the world who have not yet confronted this epidemic, as well as in those forecasting a possible second outbreak.


Assuntos
COVID-19 , Hospitalização , Aprendizado de Máquina , Modelos Biológicos , Pandemias , SARS-CoV-2 , Sinais Vitais , Idoso , Idoso de 80 Anos ou mais , COVID-19/mortalidade , COVID-19/fisiopatologia , COVID-19/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque , Valor Preditivo dos Testes , Estudos Retrospectivos , Fatores de Risco
16.
Transl Psychiatry ; 10(1): 358, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087698

RESUMO

The predisposition, severity, and progression of many diseases differ between males and females. Sex-related differences in susceptibility to neurotoxicant exposures may provide insight into the cause of the observed discrepancy. Early adolescence, a period of substantial structural and functional brain changes, may present a critical window of vulnerability to environmental exposures. This study aimed to examine sex-specific associations between co-exposure to multiple metals and visuospatial memory in early adolescence. Manganese (Mn), lead (Pb), chromium (Cr), and copper (Cu) were measured in blood, urine, hair, nails, and saliva of 188 participants (88 girls; 10-14 years of age). Visuospatial memory skills were assessed using a computerized maze task, the virtual radial arm maze (VRAM). Using generalized weighted quantile sum regression, we investigated sex-specific associations between the combined effect of exposure to the metal mixture and visuospatial working memory and determined the contribution of each component to the outcome. The results suggest that sex moderates the association between the metal mixture and visuospatial learning for all outcomes measured. In girls, exposure was associated with slower visuospatial learning and driven by Mn and Cu. In boys, exposure was associated with faster visuospatial learning, and driven by Cr. These results suggest that (a) the effect of metal co-exposure on learning differs in magnitude, and in the direction between sexes, and (b) early adolescence may be a sensitive developmental period for metal exposure.


Assuntos
Exposição Ambiental , Metais , Adolescente , Feminino , Cabelo/química , Humanos , Masculino , Manganês/análise , Saliva/química
17.
Neurotoxicology ; 78: 202-208, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32217185

RESUMO

Welding fume exposure has been associated with structural brain changes and a wide variety of clinical and sub-clinical outcomes including cognitive, behavioral and motor abnormalities. Respirator use has been shown to decrease exposure to welding fumes; however, the associations between respirator use and health outcomes, particularly neurologic health, have been understudied. In this preliminary study, we used diffusion tensor imaging (DTI) to investigate the effectiveness of respirator use in protecting workers' white matter (WM) from the harmful effects related to welding fume exposure. Fractional anisotropy (FA), a common DTI measurement of water diffusion properties, was used as a marker of WM microstructure integrity. We hypothesized that FA in brain regions involved in motor and neurocognitive functions would differ between welders reporting respirator use compared to those not using a respirator. We enrolled a pilot cohort of 19 welders from labor unions in the New York City area. All welders completed questionnaires to assess welding history and occupational health. All completed a DTI acquisition on a 3 T Siemens scanner. Partial least squares discriminant analysis (PLS-DA), a bioinformatic analytical strategy, was used to model the divergence of WM microstructures in 48 regions defined by the ICBM-DTI-81 atlas between respirator users compared to non-users. This yielded an effective discrimination of respirator users from non-users, with the uncinate fasciculus, the cerebellar peduncle and the superior longitudinal fasciculus contributing most to the discrimination of these groups. These white matter tracts are involved in widespread motor and cognitive functions. To our knowledge, this study is the first to suggest a protective effect of respirator on WM microstructure, indicating that the lack of respirator may present unsafe working conditions for welders. These preliminary findings may inform a larger, longitudinal intervention study that would be more appropriate to investigate the potential protective effect of respirator usage on brain white matter in welders.


Assuntos
Exposição Ocupacional/prevenção & controle , Dispositivos de Proteção Respiratória , Soldagem , Substância Branca/efeitos dos fármacos , Adulto , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Masculino , Ferreiros , Pessoa de Meia-Idade , Projetos Piloto , Substância Branca/diagnóstico por imagem
18.
Sci Rep ; 9(1): 9252, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31239453

RESUMO

Social behavior is extremely variable among individuals, and the neural basis of this variability is still poorly understood. In this study, we aimed to investigate the neural basis of interindividual variability in the first step of social behavior, that is, social perception. For that purpose, we first used eye-tracking to measure social perception during the passive visualization of socially relevant movie clips. Second, we correlated eye-tracking data with measures of rest cerebral blood flow (CBF) obtained using arterial spin-labeling (ASL) MRI, an index of local rest brain function. The results showed a large interindividual variability in the number of fixations to the eyes of characters during passive visualization of movie clips displaying social interactions. Moreover, individual patterns remained stable across time, suggesting an individual signature of social behavior. Whole-brain analyses showed significant positive correlation between the number of fixations to the eyes and rest CBF: individuals who looked more to the eyes were those with higher rest CBF levels within the right superior temporal regions. Our results indicate the existence of a neural and behavioral signature associated with the interindividual variability in social perception.


Assuntos
Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Movimentos Oculares/fisiologia , Descanso/fisiologia , Percepção Social , Adulto , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Marcadores de Spin
19.
Neuroimage Clin ; 21: 101610, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30497982

RESUMO

Kabuki syndrome (KS) is a rare congenital disorder (1/32000 births) characterized by distinctive facial features, intellectual disability, short stature, and dermatoglyphic and skeletal abnormalities. In the last decade, mutations in KMT2D and KDM6A were identified as a major cause of kabuki syndrome. Although genetic abnormalities have been highlighted in KS, brain abnormalities have been little explored. Here, we have investigated brain abnormalities in 6 patients with KS (4 males; Mage = 10.96 years, SD = 2.97 years) with KMT2D mutation in comparison with 26 healthy controls (17 males; Mage = 10.31 years, SD = 2.96 years). We have used MRI to explore anatomical and functional brain abnormalities in patients with KS. Anatomical abnormalities in grey matter volume were assessed by cortical and subcortical analyses. Functional abnormalities were assessed by comparing rest cerebral blood flow measured with arterial spin labeling-MRI. When compared to healthy controls, KS patients had anatomical alterations characterized by grey matter decrease localized in the bilateral precentral gyrus and middle frontal gyrus. In addition, KS patients also presented functional alterations characterized by cerebral blood flow decrease in the left precentral gyrus and middle frontal gyrus. Moreover, subcortical analyses revealed significantly decreased grey matter volume in the bilateral hippocampus and dentate gyrus in patients with KS. Our results strongly indicate anatomical and functional brain abnormalities in KS. They suggest a possible neural basis of the cognitive symptoms observed in KS, such as fine motor impairment, and indicate the need to further explore the consequences of such brain abnormalities in this disorder. Finally, our results encourage further imaging-genetics studies investigating the link between genetics, anatomical and functional brain alterations in KS.


Assuntos
Anormalidades Múltiplas/patologia , Anormalidades Múltiplas/fisiopatologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Face/anormalidades , Doenças Hematológicas/patologia , Doenças Hematológicas/fisiopatologia , Doenças Vestibulares/patologia , Doenças Vestibulares/fisiopatologia , Anormalidades Múltiplas/diagnóstico por imagem , Adolescente , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Criança , Face/irrigação sanguínea , Face/diagnóstico por imagem , Face/patologia , Face/fisiopatologia , Feminino , Doenças Hematológicas/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Marcadores de Spin , Doenças Vestibulares/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA