Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Mol Biol Rep ; 51(1): 148, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236307

RESUMO

BACKGROUND: ESR1 is expressed by 60-70% of breast tumours. it's a good prognosis factor and the target of hormone therapy. Optimization of ESR1 reactivation therapy is currently ongoing. Here we probe if the transcription factor CTCF plays a role in the differential expression of ESR1 in the breast cancer cell lines MCF-7 (ESR1+) and MDA-MB-231 (ESR1-). METHODS AND RESULTS: Knockdown of CTCF in MCF-7 resulted in decreased ESR1 gene expression. CTCF binds to the promoter of ESR1 in MCF-7 but not in MDA-MB-231 cells. CTCF ESR1 binding sites are unmethylated in MCF7 but methylated in MDA-MB-231 cells. CONCLUSION: ESR1 expression in MCF7 cells is dependent on CTCF expression. CTCF can bind to specific regions of the promotor of ESR1 gene in MCF-7 cells but not in MDA-MB-231 cells, this correlates with the methylation status of these regions and could be involved in the transcriptional regulation of ESR1.


Assuntos
Neoplasias da Mama , Fator de Ligação a CCCTC , Metilação de DNA , Receptor alfa de Estrogênio , Humanos , DNA , Metilação de DNA/genética , Células MCF-7 , Células MDA-MB-231 , Neoplasias da Mama/genética , Regiões Promotoras Genéticas , Fator de Ligação a CCCTC/genética , Receptor alfa de Estrogênio/genética
2.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385324

RESUMO

As phosphorus is one of the most limiting nutrients in many natural and agricultural ecosystems, plants have evolved strategies that cope with its scarcity. Genetic approaches have facilitated the identification of several molecular elements that regulate the phosphate (Pi) starvation response (PSR) of plants, including the master regulator of the transcriptional response to phosphate starvation PHOSPHATE STARVATION RESPONSE1 (PHR1). However, the chromatin modifications underlying the plant transcriptional response to phosphate scarcity remain largely unknown. Here, we present a detailed analysis of changes in chromatin accessibility during phosphate starvation in Arabidopsis thaliana root cells. Root cells undergo a genome-wide remodeling of chromatin accessibility in response to Pi starvation that is often associated with changes in the transcription of neighboring genes. Analysis of chromatin accessibility in the phr1 phl2 double mutant revealed that the transcription factors PHR1 and PHL2 play a key role in remodeling chromatin accessibility in response to Pi limitation. We also discovered that PHR1 and PHL2 play an important role in determining chromatin accessibility and the associated transcription of many genes under optimal Pi conditions, including genes involved in the PSR. We propose that a set of transcription factors directly activated by PHR1 in Pi-starved root cells trigger a second wave of epigenetic changes required for the transcriptional activation of the complete set of low-Pi-responsive genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genoma de Planta , Fosfatos/administração & dosagem , Fosfatos/farmacologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Fosfatos/metabolismo , Raízes de Plantas/citologia , Fatores de Transcrição/genética
3.
Genes Dev ; 28(7): 723-34, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24696455

RESUMO

The multifunctional CCCTC-binding factor (CTCF) protein exhibits a broad range of functions, including that of insulator and higher-order chromatin organizer. We found that CTCF comprises a previously unrecognized region that is necessary and sufficient to bind RNA (RNA-binding region [RBR]) and is distinct from its DNA-binding domain. Depletion of cellular CTCF led to a decrease in not only levels of p53 mRNA, as expected, but also those of Wrap53 RNA, an antisense transcript originated from the p53 locus. PAR-CLIP-seq (photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation [PAR-CLIP] combined with deep sequencing) analyses indicate that CTCF binds a multitude of transcripts genome-wide as well as to Wrap53 RNA. Apart from its established role at the p53 promoter, CTCF regulates p53 expression through its physical interaction with Wrap53 RNA. Cells harboring a CTCF mutant in its RBR exhibit a defective p53 response to DNA damage. Moreover, the RBR facilitates CTCF multimerization in an RNA-dependent manner, which may bear directly on its role in establishing higher-order chromatin structures in vivo.


Assuntos
Regulação da Expressão Gênica , Genes p53/genética , RNA/metabolismo , Proteínas Repressoras/metabolismo , Telomerase/metabolismo , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Dano ao DNA/genética , Humanos , Chaperonas Moleculares , Mutação , Ligação Proteica , Multimerização Proteica , Proteínas Repressoras/genética , Deleção de Sequência/genética
4.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35682937

RESUMO

Thousands of long noncoding RNAs (lncRNAs) are actively transcribed in mammalian genomes. This class of RNAs has important regulatory functions in a broad range of cellular processes and diseases. Numerous lncRNAs have been demonstrated to mediate gene regulation through RNA-based mechanisms. Simultaneously, non-functional lncRNA transcripts derived from the activity of lncRNA loci have been identified, which underpin the notion that a considerable fraction of lncRNA loci exert regulatory functions through mechanisms associated with the production or the activity of lncRNA loci beyond the synthesized transcripts. We particularly distinguish two main RNA-independent components associated with regulatory effects; the act of transcription and the activity of DNA regulatory elements. We describe the experimental approaches to distinguish and understand the functional mechanisms derived from lncRNA loci. These scenarios reveal emerging mechanisms important to understanding the lncRNA implications in genome biology.


Assuntos
RNA Longo não Codificante , Animais , Regulação da Expressão Gênica , Genoma , Mamíferos/genética , RNA Longo não Codificante/genética , Sequências Reguladoras de Ácido Nucleico
5.
Development ; 145(6)2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29567640

RESUMO

CTCF is a highly conserved zinc-finger DNA-binding protein that mediates interactions between distant sequences in the genome. As a consequence, CTCF regulates enhancer-promoter interactions and contributes to the three-dimensional organization of the genome. Recent studies indicate that CTCF is developmentally regulated, suggesting that it plays a role in cell type-specific genome organization. Here, we review these studies and discuss how CTCF functions during the development of various cell and tissue types, ranging from embryonic stem cells and gametes, to neural, muscle and cardiac cells. We propose that the lineage-specific control of CTCF levels, and its partnership with lineage-specific transcription factors, allows for the control of cell type-specific gene expression via chromatin looping.


Assuntos
Fator de Ligação a CCCTC , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Animais , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Conformação de Ácido Nucleico
6.
J Cell Biochem ; 119(1): 401-413, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28590037

RESUMO

The pathological characteristic of cirrhosis is scarring which results in a structurally distorted and dysfunctional liver. Previously, we demonstrated that Col1a1 and Pparg genes are deregulated in CCl4 -induced cirrhosis but their normal expression levels are recovered upon treatment with IFC-305, an adenosine derivative. We observed that adenosine was able to modulate S-adenosylmethionine-dependent trans-methylation reactions, and recently, we found that IFC-305 modulates HDAC3 expression. Here, we investigated whether epigenetic mechanisms, involving DNA methylation processes and histone acetylation, could explain the re-establishment of gene expression mediated by IFC-305 in cirrhosis. Therefore, Wistar rats were CCl4 treated and a sub-group received IFC-305 to reverse fibrosis. Global changes in DNA methylation, 5-hydroxymethylation, and histone H4 acetylation were observed after treatment with IFC-305. In particular, during cirrhosis, the Pparg gene promoter is depleted of histone H4 acetylation, whereas IFC-305 administration restores normal histone acetylation levels which correlates with an increase of Pparg transcript and protein levels. In contrast, the promoter of Col1a1 gene is hypomethylated during cirrhosis but gains DNA methylation upon treatment with IFC-305 which correlates with a reduction of Col1a1 transcript and protein levels. Our results suggest a model in which cirrhosis results in a general loss of permissive chromatin histone marks which triggers the repression of the Pparg gene and the upregulation of the Col1a1 gene. Treatment with IFC-305 restores epigenetic modifications globally and specifically at the promoters of Pparg and Col1a1 genes. These results reveal one of the mechanisms of action of IFC-305 and suggest a possible therapeutic function in cirrhosis. J. Cell. Biochem. 119: 401-413, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Adenosina/análogos & derivados , Intoxicação por Tetracloreto de Carbono/tratamento farmacológico , Epigênese Genética/efeitos dos fármacos , Cirrose Hepática Experimental/tratamento farmacológico , Adenosina/farmacologia , Animais , Intoxicação por Tetracloreto de Carbono/genética , Intoxicação por Tetracloreto de Carbono/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Ratos , Ratos Wistar
7.
Cell Mol Life Sci ; 73(15): 2897-910, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27026300

RESUMO

During organism development, a diversity of cell types emerges with disparate, yet stable profiles of gene expression with distinctive cellular functions. In addition to gene promoters, the genome contains enhancer regulatory sequences, which are implicated in cellular specialization by facilitating cell-type and tissue-specific gene expression. Enhancers are DNA binding elements characterized by highly sophisticated and various mechanisms of action allowing for the specific interaction of general and tissue-specific transcription factors (TFs). However, eukaryotic organisms package their genetic material into chromatin, generating a physical barrier for TFs to interact with their cognate sequences. The ability of TFs to bind DNA regulatory elements is also modulated by changes in the chromatin structure, including histone modifications, histone variants, ATP-dependent chromatin remodeling, and the methylation status of DNA. Furthermore, it has recently been revealed that enhancer sequences are also transcribed into a set of enhancer RNAs with regulatory potential. These interdependent processes act in the context of a complex network of chromatin interactions, which together contributes to a renewed vision of how gene activation is coordinated in a cell-type-dependent manner. In this review, we describe the interplay between genetic and epigenetic aspects associated with enhancers and discuss their possible roles on enhancer function.


Assuntos
Montagem e Desmontagem da Cromatina , Elementos Facilitadores Genéticos , Animais , Metilação de DNA , Epigênese Genética , Código das Histonas , Humanos , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
8.
Biochim Biophys Acta ; 1849(8): 955-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26079690

RESUMO

The three-dimensional architecture of genomes provides new insights about genome organization and function, but many aspects remain unsolved at the local genomic scale. Here we investigate the regulation of two erythroid-specific loci, a folate receptor gene (FOLR1) and the ß-globin gene cluster, which are separated by 16kb of constitutive heterochromatin. We found that in early erythroid differentiation the FOLR1 gene presents a permissive chromatin configuration that allows its expression. Once the transition to the next differentiation state occurs, the heterochromatin spreads into the FOLR1 domain, concomitant with the dissociation of CTCF from a novel binding site, thereby resulting in irreversible silencing of the FOLR1 gene. We demonstrate that the sequences surrounding the CTCF-binding site possess classical insulator properties in vitro and in vivo. In contrast, the chicken cHS4 ß-globin insulator present on the other side of the heterochromatic segment is in a constitutive open chromatin configuration, with CTCF constantly bound from the early stages of erythroid differentiation. Therefore, this study demonstrates that the 16kb of constitutive heterochromatin contributes to silencing of the FOLR1 gene during erythroid differentiation.


Assuntos
Receptor 1 de Folato/genética , Loci Gênicos , Elementos Isolantes/fisiologia , Globinas beta/genética , Animais , Diferenciação Celular/genética , Linhagem Celular Transformada , Embrião de Galinha , Galinhas , Cromatina/genética , Cromatina/metabolismo , Eritropoese/genética , Receptor 1 de Folato/metabolismo , Regulação da Expressão Gênica , Heterocromatina/genética , Heterocromatina/metabolismo
9.
BMC Cancer ; 16: 226, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26983574

RESUMO

BACKGROUND: Post-transcriptional regulation by microRNAs is recognized as one of the major pathways for the control of cellular homeostasis. Less well understood is the transcriptional and epigenetic regulation of genes encoding microRNAs. In the present study we addressed the epigenetic regulation of the miR-181c in normal and malignant brain cells. METHODS: To explore the epigenetic regulation of the miR-181c we evaluated its expression using RT-qPCR and the in vivo binding of the CCCTC-binding factor (CTCF) to its regulatory region in different glioblastoma cell lines. DNA methylation survey, chromatin immunoprecipitation and RNA interference assays were used to assess the role of CTCF in the miR-181c epigenetic silencing. RESULTS: We found that miR-181c is downregulated in glioblastoma cell lines, as compared to normal brain tissues. Loss of expression correlated with a notorious gain of DNA methylation at the miR-181c promoter region and the dissociation of the multifunctional nuclear factor CTCF. Taking advantage of the genomic distribution of CTCF in different cell types we propose that CTCF has a local and cell type specific regulatory role over the miR-181c and not an architectural one through chromatin loop formation. This is supported by the depletion of CTCF in glioblastoma cells affecting the expression levels of NOTCH2 as a target of miR-181c. CONCLUSION: Together, our results point to the epigenetic role of CTCF in the regulation of microRNAs implicated in tumorigenesis.


Assuntos
Biomarcadores Tumorais/biossíntese , Glioblastoma/genética , MicroRNAs/biossíntese , Receptor Notch2/biossíntese , Proteínas Repressoras/biossíntese , Biomarcadores Tumorais/genética , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Metilação de DNA/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Glioblastoma/patologia , Humanos , Receptor Notch2/genética , Proteínas Repressoras/genética
10.
Gen Comp Endocrinol ; 236: 35-41, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27342379

RESUMO

Sex determination in vertebrates depends on the expression of a conserved network of genes. Sea turtles such as Lepidochelys olivacea have temperature-dependent sex determination. The present work analyses some of the epigenetic processes involved in this. We describe sexual dimorphism in global DNA methylation patterns between ovaries and testes of L. olivacea and show that the differences may arise from a combination of DNA methylation and demethylation events that occur during sex determination. Irrespective of incubation temperature, 5-hydroxymethylcytosine was abundant in the bipotential gonad; however, following sex determination, this modification was no longer found in pre-Sertoli cells in the testes. These changes correlate with the establishment of the sexually dimorphic DNA methylation patterns, down regulation of Sox9 gene expression in ovaries and irreversible gonadal commitment towards a male or female differentiation pathway. Thus, DNA methylation changes may be necessary for the stabilization of the gene expression networks that drive the differentiation of the bipotential gonad to form either an ovary or a testis in L. olivacea and probably among other species that manifest temperature-dependent sex determination.


Assuntos
Metilação de DNA/genética , Processos de Determinação Sexual/genética , Tartarugas/fisiologia , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Masculino , Temperatura
11.
Nucleic Acids Res ; 42(11): 6885-900, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24771346

RESUMO

The estrogen receptor alpha (ERα) is a ligand-activated transcription factor that possesses two activating domains designated AF-1 and AF-2 that mediate its transcriptional activity. The role of AF-2 is to recruit coregulator protein complexes capable of modifying chromatin condensation status. In contrast, the mechanism responsible for the ligand-independent AF-1 activity and for its synergistic functional interaction with AF-2 is unclear. In this study, we have identified the protein Na+/H+ Exchanger RegulatoryFactor 2 (NHERF2) as an ERα-associated coactivator that interacts predominantly with the AF-1 domain of the nuclear receptor. Overexpression of NHERF2 in breast cancer MCF7 cells produced an increase in ERα transactivation. Interestingly, the presence of SRC-1 in NHERF2 stably overexpressing MCF7 cells produced a synergistic increase in ERα activity. We show further that NHERF2 interacts with ERα and SRC-1 in the promoter region of ERα target genes. The binding of NHERF2 to ERα in MCF7 cells increased cell proliferation and the ability of MCF7 cells to form tumors in a mouse model. We analyzed the expression of NHERF2 in breast cancer tumors finding a 2- to 17-fold increase in its mRNA levels in 50% of the tumor samples compared to normal breast tissue. These results indicate that NHERF2 is a coactivator of ERα that may participate in the development of estrogen-dependent breast cancer tumors.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/metabolismo , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Ativação Transcricional , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Núcleo Celular/química , Núcleo Celular/metabolismo , Proliferação de Células , Estradiol/farmacologia , Receptor alfa de Estrogênio/análise , Receptor alfa de Estrogênio/química , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Coativador 1 de Receptor Nuclear/metabolismo , Fosfoproteínas/análise , Fosfoproteínas/genética , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Trocadores de Sódio-Hidrogênio/análise , Trocadores de Sódio-Hidrogênio/genética , Fator Trefoil-1 , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
12.
Biochim Biophys Acta ; 1839(11): 1233-41, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25239823

RESUMO

Gene promoters are frequently insufficient to drive the spatiotemporal patterns of gene expression during cell differentiation and organism development. Enhancers convey these properties through diverse mechanisms, including long-distance interactions with target promoters via their association with specific transcription factors. Despite unprecedented progress in the knowledge of enhancer mechanisms of action, there are still many unanswered questions. In particular, the contribution of an enhancer's local chromatin configuration to its mechanism of action is not completely understood. Here we describe a novel regulatory element, the Upstream Enhancer Element (UEE), which modulates the activity of the chicken α-globin 3' enhancer by regulating its chromatin structure, specifically by positioning a nucleosome upstream of the core enhancer. This element binds nuclear factors and confers a more restricted activation on the α-globin 3' enhancer, suggesting a progressive/rheostatic model for enhancer activity. Our results suggest that the UEE activity contributes to the positioning of a nucleosome that is necessary for the α-globin 3' enhancer activation.


Assuntos
Regiões 3' não Traduzidas , Galinhas/genética , Cromatina/química , Elementos Facilitadores Genéticos , alfa-Globinas/genética , Animais , Embrião de Galinha , Cromatina/metabolismo , Conformação de Ácido Nucleico , Nucleossomos/metabolismo , Transcrição Gênica
13.
Genes (Basel) ; 15(5)2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38790178

RESUMO

Recent evidence suggests that human gene promoters display gene expression regulatory mechanisms beyond the typical single gene local transcription modulation. In mammalian genomes, genes with an associated bidirectional promoter are abundant; bidirectional promoter architecture serves as a regulatory hub for a gene pair expression. However, it has been suggested that its contribution to transcriptional regulation might exceed local transcription initiation modulation. Despite their abundance, the functional consequences of bidirectional promoter architecture remain largely unexplored. This work studies the long-range gene expression regulatory role of a long non-coding RNA gene promoter using chromosome conformation capture methods. We found that this particular bidirectional promoter contributes to distal gene expression regulation in a target-specific manner by establishing promoter-promoter interactions. In particular, we validated that the promoter-promoter interactions of this regulatory element with the promoter of distal gene BBX contribute to modulating the transcription rate of this gene; removing the bidirectional promoter from its genomic context leads to a rearrangement of BBX promoter-enhancer interactions and to increased gene expression. Moreover, long-range regulatory functionality is not directly dependent on its associated non-coding gene pair expression levels.


Assuntos
Regulação da Expressão Gênica , Regiões Promotoras Genéticas , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Regulação da Expressão Gênica/genética , Transcrição Gênica , Elementos Facilitadores Genéticos
14.
Front Genet ; 15: 1384167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706797

RESUMO

Background: Cis-regulatory elements (CREs) play crucial roles in regulating gene expression during erythroid cell differentiation. Genome-wide erythroid-specific CREs have not been characterized in chicken erythroid cells, which is an organism model used to study epigenetic regulation during erythropoiesis. Methods: Analysis of public genome-wide accessibility (ATAC-seq) maps, along with transcription factor (TF) motif analysis, CTCF, and RNA Pol II occupancy, as well as transcriptome analysis in fibroblasts and erythroid HD3 cells, were used to characterize erythroid-specific CREs. An α-globin CRE was identified, and its regulatory activity was validated in vitro and in vivo by luciferase activity and genome-editing assays in HD3 cells, respectively. Additionally, circular chromosome conformation capture (UMI-4C) assays were used to distinguish its role in structuring the α-globin domain in erythroid chicken cells. Results: Erythroid-specific CREs displayed occupancy by erythroid TF binding motifs, CTCF, and RNA Pol II, as well as an association with genes involved in hematopoiesis and cell differentiation. An α-globin CRE, referred to as CRE-2, was identified as exhibiting enhancer activity over αD and αA genes in vitro and in vivo. Induction of terminal erythroid differentiation showed that α-globin CRE-2 is required for the induction of αD and αA. Analysis of TF binding motifs at α-globin CRE-2 shows apparent regulation mediated by GATA-1, YY1, and CTCF binding. Conclusion: Our findings demonstrate that cell-specific CREs constitute a key mechanism that contributes to the fine-tuning gene regulation of erythroid cell differentiation and provide insights into the annotation and characterization of CREs in chicken cells.

15.
Nucleic Acids Res ; 39(1): 89-103, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20813760

RESUMO

Genome organization into transcriptionally active domains denotes one of the first levels of gene expression regulation. Although the chromatin domain concept is generally accepted, only little is known on how domain organization impacts the regulation of differential gene expression. Insulators might hold answers to address this issue as they delimit and organize chromatin domains. We have previously identified a CTCF-dependent insulator with enhancer-blocking activity embedded in the 5' non-coding region of the chicken α-globin domain. Here, we demonstrate that this element, called the αEHS-1.4 insulator, protects a transgene against chromosomal position effects in stably transfected cell lines and transgenic mice. We found that this insulator can create a regulated chromatin environment that coincides with the onset of adult α-globin gene expression. Furthermore, such activity is in part dependent on the in vivo regulated occupancy of CTCF at the αEHS-1.4 element. Insulator function is also regulated by CTCF poly(ADP-ribosyl)ation. Our results suggest that the αEHS-1.4 insulator contributes in organizing the chromatin structure of the α-globin gene domain and prevents activation of adult α-globin gene expression at the erythroblast stage via CTCF.


Assuntos
Cromatina/química , Regulação da Expressão Gênica , Elementos Isolantes , alfa-Globinas/genética , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Diferenciação Celular , Linhagem Celular , Galinhas/genética , Cromatina/genética , Cromatina/metabolismo , Efeitos da Posição Cromossômica , Células Eritroides/citologia , Células Eritroides/metabolismo , Loci Gênicos , Região de Controle de Locus Gênico , Camundongos , Camundongos Transgênicos , Inibidores de Poli(ADP-Ribose) Polimerases , Proteínas Repressoras/metabolismo , Transcrição Gênica , Ativação Transcricional , Transfecção , alfa-Globinas/metabolismo
16.
Heliyon ; 9(11): e21519, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027697

RESUMO

The TGF-ß and Hippo pathways are critical for liver size control, regeneration, and cancer progression. The transcriptional cofactor TAZ, also named WWTR1, is a downstream effector of Hippo pathway and plays a key role in the maintenance of liver physiological functions. However, the up-regulation of TAZ expression has been associated with liver cancer progression. Recent evidence shows crosstalk of TGF-ß and Hippo pathways, since TGF-ß modulates TAZ expression through different mechanisms in a cellular context-dependent manner but supposedly independent of SMADs. Here, we evaluate the molecular interplay between TGF-ß pathway and TAZ expression and observe that TGF-ß induces TAZ expression through SMAD canonical pathway in liver cancer HepG2 cells. Therefore, TAZ cofactor is a primary target of TGF-ß/SMAD-signaling, one of the pathways altered in liver cancer.

17.
J Biol Chem ; 286(14): 12483-94, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21288905

RESUMO

CTCF nuclear factor regulates many aspects of gene expression, largely as a transcriptional repressor or via insulator function. Its roles in cellular differentiation are not clear. Here we show an unexpected role for CTCF in myogenesis. Ctcf is expressed in myogenic structures during mouse and zebrafish development. Gain- and loss-of-function approaches in C2C12 cells revealed CTCF as a modulator of myogenesis by regulating muscle-specific gene expression. We addressed the functional connection between CTCF and myogenic regulatory factors (MRFs). CTCF enhances the myogenic potential of MyoD and myogenin and establishes direct interactions with MyoD, indicating that CTCF regulates MRF-mediated muscle differentiation. Indeed, CTCF modulates functional interactions between MyoD and myogenin in co-activation of muscle-specific gene expression and facilitates MyoD recruitment to a muscle-specific promoter. Finally, ctcf loss-of-function experiments in zebrafish embryos revealed a critical role of CTCF in myogenic development and linked CTCF to broader aspects of development via regulation of Wnt signaling. We conclude that CTCF modulates MRF functional interactions in the orchestration of myogenesis.


Assuntos
Desenvolvimento Muscular/fisiologia , Fatores de Regulação Miogênica/metabolismo , Proteínas Repressoras/metabolismo , Animais , Fator de Ligação a CCCTC , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Imunoprecipitação da Cromatina , Embrião de Mamíferos/metabolismo , Embrião não Mamífero/metabolismo , Imunoprecipitação , Hibridização In Situ , Camundongos , Desenvolvimento Muscular/genética , Proteína MyoD/genética , Proteína MyoD/metabolismo , Fatores de Regulação Miogênica/genética , Miogenina/genética , Miogenina/metabolismo , Ligação Proteica/genética , Ligação Proteica/fisiologia , RNA Interferente Pequeno , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Somitos/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
18.
BMC Cancer ; 12: 40, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22277129

RESUMO

BACKGROUND: In cancer cells, transcriptional gene silencing has been associated with genetic and epigenetic defects. The disruption of DNA methylation patterns and covalent histone marks has been associated with cancer development. Until recently, microRNA (miRNA) gene silencing was not well understood. In particular, miR-125b1 has been suggested to be an miRNA with tumor suppressor activity, and it has been shown to be deregulated in various human cancers. In the present study, we evaluated the DNA methylation at the CpG island proximal to the transcription start site of miR-125b1 in cancer cell lines as well as in normal tissues and gynecological tumor samples. In addition, we analyzed the association of CTCF and covalent histone modifications at the miR-125b1 locus. METHODS: To assess the DNA methylation status of the miR-125b1, genomic DNA was transformed with sodium bisulfite, and then PCR-amplified with modified primers and sequenced. The miR-125b1 gene expression was analyzed by qRT-PCR using U6 as a control for constitutive gene expression. CTCF repressive histone marks abundance was evaluated by chromatin immunoprecipitation assays. RESULTS: The disruption of CTCF in breast cancer cells correlated with the incorporation of repressive histone marks such H3K9me3 and H3K27me3 as well as with aberrant DNA methylation patterns. To determine the effect of DNA methylation at the CpG island of miR-125b1 on the expression of this gene, we performed a qRT-PCR assay. We observed a significant reduction on the expression of miR-125b1 in cancer cells in comparison with controls, suggesting that DNA methylation at the CpG island might reduce miR-125b1 expression. These effects were observed in other gynecological cancers, including ovarian and cervical tumors. CONCLUSIONS: A reduction of miR-125b1 expression in cancers, correlated with methylation, repressive histone marks and loss of CTCF binding at the promoter region.


Assuntos
Neoplasias da Mama/genética , Ilhas de CpG/genética , MicroRNAs/genética , Neoplasias Ovarianas/genética , Proteínas Repressoras/genética , Neoplasias do Colo do Útero/genética , Neoplasias da Mama/metabolismo , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Metilação de DNA/genética , DNA de Neoplasias/genética , Epigênese Genética/genética , Feminino , Inativação Gênica , Histonas/metabolismo , Humanos , Neoplasias Ovarianas/metabolismo , Neoplasias do Colo do Útero/metabolismo
19.
Arch Med Res ; 53(8): 732-740, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411173

RESUMO

Cancer is a complex disease caused by genetic and epigenetic alterations in the control of cell division. Findings from the field of cancer genomics and epigenomics have increased our understanding of the origin and evolution of tumorigenic processes, greatly advancing our knowledge of the molecular etiology of cancer. Consequently, any contemporary view of cancer research must consider tumorigenesis as a cellular phenomenon that is a result of the interplay between genetic and epigenetic mutations and their interaction with environmental factors, including our microbiome, that influences cellular metabolism and proliferation rates. The integration and better knowledge of these processes will help us to improve diagnosis, prognosis, and future genetic and epigenetic therapies. Here, I present an overview of the epigenetic processes that are affected in cancer and how they contribute to the onset and progression of the disease. Finally, I discuss how the development of sophisticated experimental approaches and computational tools, including novel ways to exploit large data sets, could contribute to the better understanding and treatment of cancer.


Assuntos
Epigenômica , Neoplasias , Humanos , Epigênese Genética , Neoplasias/genética , Neoplasias/terapia , Genômica , Metilação de DNA
20.
Arch Med Res ; 53(8): 840-858, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36470770

RESUMO

BACKGROUND: The oncogenic process is orchestrated by a complex network of chromatin remodeling elements that shape the cancer epigenome. Histone variant H2A.Z regulates DNA control elements such as promoters and enhancers in different types of cancer; however, the interplay between H2A.Z and the pancreatic cancer epigenome is unknown. OBJECTIVE: This study analyzed the role of H2A.Z in different DNA regulatory elements. METHODS: We performed Chromatin Immunoprecipitation Sequencing assays (ChiP-seq) with total H2A.Z and acetylated H2A.Z (acH2A.Z) antibodies and analyzed published data from ChIP-seq, RNA-seq, bromouridine labeling-UV and sequencing (BruUV-seq), Hi-C and ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) in the pancreatic cancer cell line PANC-1. RESULTS: The results indicate that total H2A.Z facilitates the recruitment of RNA polymerase II and transcription factors at promoters and enhancers allowing the expression of pro-oncogenic genes. Interestingly, we demonstrated that H2A.Z is enriched in super-enhancers (SEs) contributing to the transcriptional activation of key genes implicated in tumor development. Importantly, we established that H2A.Z contributes to the three-dimensional (3D) genome organization of pancreatic cancer and that it is a component of the Topological Associated Domains (TADs) boundaries in PANC-1 and that total H2A.Z and acH2A.Z are associated with A and B compartments, respectively. CONCLUSIONS: H2A.Z participates in the biology and development of pancreatic cancer by generating a pro-oncogenic transcriptome through its posttranslational modifications, interactions with different partners, and regulatory elements, contributing to the oncogenic 3D genome organization. These data allow us to understand the molecular mechanisms that promote an oncogenic transcriptome in pancreatic cancer mediated by H2A.Z.


Assuntos
Histonas , Neoplasias Pancreáticas , Humanos , Histonas/genética , Histonas/metabolismo , Nucleossomos , Cromatina/genética , DNA , Neoplasias Pancreáticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA