Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(19): 3533-3545.e5, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802026

RESUMO

CRISPR-Cas9 is a powerful gene-editing technology; however, off-target activity remains an important consideration for therapeutic applications. We have previously shown that force-stretching DNA induces off-target activity and hypothesized that distortions of the DNA topology in vivo, such as negative DNA supercoiling, could reduce Cas9 specificity. Using single-molecule optical-tweezers, we demonstrate that negative supercoiling λ-DNA induces sequence-specific Cas9 off-target binding at multiple sites, even at low forces. Using an adapted CIRCLE-seq approach, we detect over 10,000 negative-supercoiling-induced Cas9 off-target double-strand breaks genome-wide caused by increased mismatch tolerance. We further demonstrate in vivo that directed local DNA distortion increases off-target activity in cells and that induced off-target events can be detected during Cas9 genome editing. These data demonstrate that Cas9 off-target activity is regulated by DNA topology in vitro and in vivo, suggesting that cellular processes, such as transcription and replication, could induce off-target activity at previously overlooked sites.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Genoma , DNA/genética , Pinças Ópticas
2.
Trends Biochem Sci ; 48(4): 321-330, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36357311

RESUMO

The concept of the histone code posits that histone modifications regulate gene functions once interpreted by epigenetic readers. A well-studied case is trimethylation of lysine 4 of histone H3 (H3K4me3), which is enriched at gene promoters. However, H3K4me3 marks are not needed for the expression of most genes, suggesting extra roles, such as influencing the 3D genome architecture. Here, we highlight an intriguing analogy between the H3K4me3-dependent induction of double-strand breaks in several recombination events and the impact of this same mark on DNA incisions for the repair of bulky lesions. We propose that Su(var)3-9, Enhancer-of-zeste and Trithorax (SET)-domain methyltransferases generate H3K4me3 to guide nucleases into chromatin spaces, the favorable accessibility of which ensures that DNA break intermediates are readily processed, thereby safeguarding genome stability.


Assuntos
Cromatina , Metiltransferases , Metiltransferases/metabolismo , Metilação , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica
3.
Mutagenesis ; 38(4): 192-200, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37300447

RESUMO

The use of error-corrected Next Generation Sequencing (ecNG) to determine mutagenicity has been a subject of growing interest and potentially a disruptive technology that could supplement, and in time, replace current testing paradigms in preclinical safety assessment. Considering this, a Next Generation Sequencing Workshop was held at the Royal Society of Medicine in London in May 2022, supported by the United Kingdom Environmental Mutagen Society (UKEMS) and TwinStrand Biosciences (WA, USA), to discuss progress and future applications of this technology. In this meeting report, the invited speakers provide an overview of the Workshop topics covered and identify future directions for research. In the area of somatic mutagenesis, several speakers reviewed recent progress made with correlating ecNGS to classic in vivo transgenic rodent mutation assays as well as exploring the use of this technology directly in humans and animals, and in complex organoid models. Additionally, ecNGS has been used for detecting off-target effects of gene editing tools and emerging data suggest ecNGS potential to measure clonal expansion of cells carrying mutations in cancer driver genes as an early marker of carcinogenic potential and for direct human biomonitoring. As such, the workshop demonstrated the importance of raising awareness and support for advancing the science of ecNGS for mutagenesis, gene editing, and carcinogenesis research. Furthermore, the potential of this new technology to contribute to advances in drug and product development and improve safety assessment was extensively explored.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mutagênicos , Animais , Humanos , Londres , Mutagênese , Mutação , Carcinogênese , Genômica
4.
Genome Res ; 29(1): 74-84, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30552104

RESUMO

Repair of UV-induced DNA damage requires chromatin remodeling. How repair is initiated in chromatin remains largely unknown. We recently demonstrated that global genome-nucleotide excision repair (GG-NER) in chromatin is organized into domains in relation to open reading frames. Here, we define these domains, identifying the genomic locations from which repair is initiated. By examining DNA damage-induced changes in the linear structure of nucleosomes at these sites, we demonstrate how chromatin remodeling is initiated during GG-NER. In undamaged cells, we show that the GG-NER complex occupies chromatin, establishing the nucleosome structure at these genomic locations, which we refer to as GG-NER complex binding sites (GCBSs). We demonstrate that these sites are frequently located at genomic boundaries that delineate chromosomally interacting domains (CIDs). These boundaries define domains of higher-order nucleosome-nucleosome interaction. We demonstrate that initiation of GG-NER in chromatin is accompanied by the disruption of dynamic nucleosomes that flank GCBSs by the GG-NER complex.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Reparo do DNA/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Genoma Fúngico/fisiologia , Nucleossomos , Saccharomyces cerevisiae , Nucleossomos/genética , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Genome Res ; 26(10): 1376-1387, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27470111

RESUMO

The rates at which lesions are removed by DNA repair can vary widely throughout the genome, with important implications for genomic stability. To study this, we measured the distribution of nucleotide excision repair (NER) rates for UV-induced lesions throughout the budding yeast genome. By plotting these repair rates in relation to genes and their associated flanking sequences, we reveal that, in normal cells, genomic repair rates display a distinctive pattern, suggesting that DNA repair is highly organized within the genome. Furthermore, by comparing genome-wide DNA repair rates in wild-type cells and cells defective in the global genome-NER (GG-NER) subpathway, we establish how this alters the distribution of NER rates throughout the genome. We also examined the genomic locations of GG-NER factor binding to chromatin before and after UV irradiation, revealing that GG-NER is organized and initiated from specific genomic locations. At these sites, chromatin occupancy of the histone acetyl-transferase Gcn5 is controlled by the GG-NER complex, which regulates histone H3 acetylation and chromatin structure, thereby promoting efficient DNA repair of UV-induced lesions. Chromatin remodeling during the GG-NER process is therefore organized into these genomic domains. Importantly, loss of Gcn5 significantly alters the genomic distribution of NER rates; this has implications for the effects of chromatin modifiers on the distribution of mutations that arise throughout the genome.


Assuntos
Cromatina/genética , Reparo do DNA , Genoma Fúngico , Acetilação , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Taxa de Mutação , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Nucleic Acids Res ; 43(19): 9133-46, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26400171

RESUMO

The mutational pattern for the TP53 tumour suppressor gene in lung tumours differs to other cancer types by having a higher frequency of G:C>T:A transversions. The aetiology of this differing mutation pattern is still unknown. Benzo[a]pyrene,diol epoxide (BPDE) is a potent cigarette smoke carcinogen that forms guanine adducts at TP53 CpG mutation hotspot sites including codons 157, 158, 245, 248 and 273. We performed molecular modelling of BPDE-adducted TP53 duplex sequences to determine the degree of local distortion caused by adducts which could influence the ability of nucleotide excision repair. We show that BPDE adducted codon 157 has greater structural distortion than other TP53 G:C>T:A hotspot sites and that sequence context more distal to adjacent bases must influence local distortion. Using TP53 trinucleotide mutation signatures for lung cancer in smokers and non-smokers we further show that codons 157 and 273 have the highest mutation probability in smokers. Combining this information with adduct structural data we predict that G:C>T:A mutations at codon 157 in lung tumours of smokers are predominantly caused by BPDE. Our results provide insight into how different DNA sequence contexts show variability in DNA distortion at mutagen adduct sites that could compromise DNA repair at well characterized cancer related mutation hotspots.


Assuntos
Benzo(a)pireno/química , Carcinógenos/química , Adutos de DNA/química , Dano ao DNA , Genes p53 , Neoplasias Pulmonares/genética , Mutação , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/química , Sequência de Bases , Códon , DNA/química , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Fumar
7.
Nucleic Acids Res ; 43(15): 7360-70, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26150418

RESUMO

Regulating gene expression programmes is a central facet of the DNA damage response. The Dun1 kinase protein controls expression of many DNA damage induced genes, including the ribonucleotide reductase genes, which regulate cellular dNTP pools. Using a combination of gene expression profiling and chromatin immunoprecipitation, we demonstrate that in the absence of DNA damage the yeast Rad4-Rad23 nucleotide excision repair complex binds to the promoters of certain DNA damage response genes including DUN1, inhibiting their expression. UV radiation promotes the loss of occupancy of the Rad4-Rad23 complex from the regulatory regions of these genes, enabling their induction and thereby controlling the production of dNTPs. We demonstrate that this regulatory mechanism, which is dependent on the ubiquitination of Rad4 by the GG-NER E3 ligase, promotes UV survival in yeast cells. These results support an unanticipated regulatory mechanism that integrates ubiquitination of NER DNA repair factors with the regulation of the transcriptional response controlling dNTP production and cellular survival after UV damage.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleotídeos/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Ubiquitinação , Raios Ultravioleta , Dano ao DNA , Regiões Promotoras Genéticas , Transcrição Gênica , Ubiquitina-Proteína Ligases/metabolismo , Leveduras/enzimologia , Leveduras/genética , Leveduras/metabolismo , Leveduras/efeitos da radiação
8.
Proc Natl Acad Sci U S A ; 110(4): 1434-9, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23292936

RESUMO

Smoothened antagonists directly target the genetic basis of human basal cell carcinoma (BCC), the most common of all cancers. These drugs inhibit BCC growth, but they are not curative. Although BCC cells are monomorphic, immunofluorescence microscopy reveals a complex hierarchical pattern of growth with inward differentiation along hair follicle lineages. Most BCC cells express the transcription factor KLF4 and are committed to terminal differentiation. A small CD200(+) CD45(-) BCC subpopulation that represents 1.63 ± 1.11% of all BCC cells resides in small clusters at the tumor periphery. By using reproducible in vivo xenograft growth assays, we determined that tumor initiating cell frequencies approximate one per 1.5 million unsorted BCC cells. The CD200(+) CD45(-) BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200(+) CD45(-) cells, representing ~1,500-fold enrichment. CD200(-) CD45(-) BCC cells were unable to form tumors. These findings establish a platform to study the effects of Smoothened antagonists on BCC tumor initiating cell and also suggest that currently available anti-CD200 therapy be considered, either as monotherapy or an adjunct to Smoothened antagonists, in the treatment of inoperable BCC.


Assuntos
Antígenos CD/metabolismo , Carcinoma Basocelular/imunologia , Carcinoma Basocelular/patologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Animais , Carcinoma Basocelular/metabolismo , Diferenciação Celular , Proliferação de Células , Humanos , Queratinas/metabolismo , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Neoplasias Cutâneas/metabolismo , Receptor Smoothened , Transplante Heterólogo , Ensaio Tumoral de Célula-Tronco
9.
Nucleic Acids Res ; 41(19): 9006-19, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23925126

RESUMO

Nucleotide excision repair (NER) is critical for maintaining genome integrity. How chromatin dynamics are regulated to facilitate this process in chromatin is still under exploration. We show here that a histone H2A variant, Htz1 (H2A.Z), in nucleosomes has a positive function in promoting efficient NER in yeast. Htz1 inherently enhances the occupancy of the histone acetyltransferase Gcn5 on chromatin to promote histone H3 acetylation after UV irradiation. Consequently, this results in an increased binding of a NER protein, Rad14, to damaged DNA. Cells without Htz1 show increased UV sensitivity and defective removal of UV-induced DNA damage in the Htz1-bearing nucleosomes at the repressed MFA2 promoter, but not in the HMRa locus where Htz1 is normally absent. Thus, the effect of Htz1 on NER is specifically relevant to its presence in chromatin within a damaged region. The chromatin accessibility to micrococcal nuclease in the MFA2 promoter is unaffected by HTZ1 deletion. Acetylation on previously identified lysines of Htz1 plays little role in NER or cell survival after UV. In summary, we have identified a novel aspect of chromatin that regulates efficient NER, and we provide a model for how Htz1 influences NER in Htz1 nucleosomes.


Assuntos
Reparo do DNA , Histonas/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilação , Adenosina Trifosfatases/genética , Cromatina/química , Dano ao DNA , Enzimas Reparadoras do DNA/metabolismo , Deleção de Genes , Histona Acetiltransferases/metabolismo , Histonas/genética , Lipoproteínas/genética , Viabilidade Microbiana , Feromônios/genética , Regiões Promotoras Genéticas , Dímeros de Pirimidina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Raios Ultravioleta
10.
PLoS Genet ; 7(6): e1002124, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21698136

RESUMO

Global genome nucleotide excision repair removes DNA damage from transcriptionally silent regions of the genome. Relatively little is known about the molecular events that initiate and regulate this process in the context of chromatin. We've shown that, in response to UV radiation-induced DNA damage, increased histone H3 acetylation at lysine 9 and 14 correlates with changes in chromatin structure, and these alterations are associated with efficient global genome nucleotide excision repair in yeast. These changes depend on the presence of the Rad16 protein. Remarkably, constitutive hyperacetylation of histone H3 can suppress the requirement for Rad7 and Rad16, two components of a global genome repair complex, during repair. This reveals the connection between histone H3 acetylation and DNA repair. Here, we investigate how chromatin structure is modified following UV irradiation to facilitate DNA repair in yeast. Using a combination of chromatin immunoprecipitation to measure histone acetylation levels, histone acetylase occupancy in chromatin, MNase digestion, or restriction enzyme endonuclease accessibility assays to analyse chromatin structure, and finally nucleotide excision repair assays to examine DNA repair, we demonstrate that global genome nucleotide excision repair drives UV-induced chromatin remodelling by controlling histone H3 acetylation levels in chromatin. The concerted action of the ATPase and C3HC4 RING domains of Rad16 combine to regulate the occupancy of the histone acetyl transferase Gcn5 on chromatin in response to UV damage. We conclude that the global genome repair complex in yeast regulates UV-induced histone H3 acetylation by controlling the accessibility of the histone acetyl transferase Gcn5 in chromatin. The resultant changes in histone H3 acetylation promote chromatin remodelling necessary for efficient repair of DNA damage. Recent evidence suggests that GCN5 plays a role in NER in human cells. Our work provides important insight into how GG-NER operates in chromatin.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Dano ao DNA , Reparo do DNA/genética , Saccharomyces cerevisiae , Acetilação/efeitos da radiação , Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Deleção de Genes , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Lipoproteínas/genética , Proteínas Nucleares/genética , Feromônios/genética , Regiões Promotoras Genéticas/genética , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Raios Ultravioleta
11.
Noncoding RNA Res ; 9(3): 649-658, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38577022

RESUMO

In recent years, various long non-coding RNAs (lncRNAs) involved in DNA damage response (DDR) have been identified and studied to deepen our understanding. However, there are rare reports on the association between lncRNAs and base excision repair (BER). Our designed DNA microarray identified dozens of functionally unknown lncRNAs, and their transcription levels significantly increased upon exposure to DNA damage inducers. One of them, named LIP (Long noncoding RNA Interacts with PARP-1), exhibited a significant alteration in transcription in response to methyl methanesulfonate (MMS) and temozolomide (TMZ) treatments. LIP knockdown or knockout cell lines are sensitive to MMS and TMZ, indicating that LIP plays a crucial role in DDR. The loss or insufficiency of LIP significantly influences the efficiency of BER in human cells, and it suggests that LIP participates in the BER pathway. The interaction between LIP and a key factor in BER, poly (ADP-ribose) polymerase 1 (PARP-1), has been confirmed. We identified and characterized LIP, a lncRNA, which is involved in DDR, significantly influences BER efficiency, and interacts with the BER key factor PARP-1. This advances our understanding of the connection between lncRNAs and BER, presenting the potential for the discovery of new drug targets.

12.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260523

RESUMO

Mammalian DNA replication employs several RecQ DNA helicases to orchestrate the faithful duplication of genetic information. Helicase function is often coupled to the activity of specific nucleases, but how helicase and nuclease activities are co-directed is unclear. Here we identify the inactive ubiquitin-specific protease, USP50, as a ubiquitin-binding and chromatin-associated protein required for ongoing replication, fork restart, telomere maintenance and cellular survival during replicative stress. USP50 supports WRN:FEN1 at stalled replication forks, suppresses MUS81-dependent fork collapse and restricts double-strand DNA breaks at GC-rich sequences. Surprisingly we find that cells depleted for USP50 and recovering from a replication block exhibit increased DNA2 and RECQL4 foci and that the defects in ongoing replication, poor fork restart and increased fork collapse seen in these cells are mediated by DNA2, RECQL4 and RECQL5. These data define a novel ubiquitin-dependent pathway that promotes the balance of helicase: nuclease use at ongoing and stalled replication forks.

13.
Nucleic Acids Res ; 39(2): e10, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21062813

RESUMO

DNA damage occurs via endogenous and exogenous genotoxic agents and compromises a genome's integrity. Knowing where damage occurs within a genome is crucial to understanding the repair mechanisms which protect this integrity. This paper describes a new development based on microarray technology which uses ultraviolet light induced DNA damage as a paradigm to determine the position and frequency of DNA damage and its subsequent repair throughout the entire yeast genome.


Assuntos
Dano ao DNA , Reparo do DNA , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Proteínas de Ligação a DNA/genética , Genoma Fúngico , Mutação , Dímeros de Pirimidina/análise , Raios Ultravioleta , Leveduras/genética
14.
Nucleic Acids Res ; 38(14): 4675-86, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20385597

RESUMO

Very little is currently known about how nucleotide excision repair (NER) functions at the ends of chromosomes. To examine this, we introduced the URA3 gene into either transcriptionally active or repressed subtelomeric regions of the yeast genome. This enabled us to examine the repair of ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPDs) in identical sequences under both circumstances. We found that NER is significantly more efficient in the non-repressed subtelomere than the repressed one. At the non-repressed subtelomere, UV radiation stimulates both histones H3 and H4 acetylation in a similar fashion to that seen at other regions of the yeast genome. These modifications occur regardless of the presence of the Sir2 histone deacetylase. On the other hand, at the repressed subtelomere, where repair is much less efficient, UV radiation is unable to stimulate histone H4 or H3 acetylation in the presence of Sir2. In the absence of Sir2 both of these UV-induced modifications are detected, resulting in a significant increase in NER efficiency in the region. Our experiments reveal that there are instances in the yeast genome where the maintenance of the existing chromatin structures dominates over the action of chromatin modifications associated with efficient NER.


Assuntos
Cromatina/química , Reparo do DNA , Inativação Gênica , Histonas/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/fisiologia , Sirtuína 2/fisiologia , Acetilação , Ciclo Celular/efeitos da radiação , Cromatina/metabolismo , Cromossomos Fúngicos , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Nuclease do Micrococo , Dímeros de Pirimidina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos da radiação , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2/genética , Transcrição Gênica , Raios Ultravioleta
15.
Nat Commun ; 13(1): 3989, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810156

RESUMO

Understanding how breaks form and are repaired in the genome depends on the accurate measurement of the frequency and position of DNA double strand breaks (DSBs). This is crucial for identification of a chemical's DNA damage potential and for safe development of therapies, including genome editing technologies. Current DSB sequencing methods suffer from high background levels, the inability to accurately measure low frequency endogenous breaks and high sequencing costs. Here we describe INDUCE-seq, which overcomes these problems, detecting simultaneously the presence of low-level endogenous DSBs caused by physiological processes, and higher-level recurrent breaks induced by restriction enzymes or CRISPR-Cas nucleases. INDUCE-seq exploits an innovative NGS flow cell enrichment method, permitting the digital detection of breaks. It can therefore be used to determine the mechanism of DSB repair and to facilitate safe development of therapeutic genome editing. We further discuss how the method can be adapted to detect other genomic features.


Assuntos
Quebras de DNA de Cadeia Dupla , Edição de Genes , Sistemas CRISPR-Cas/genética , DNA/genética , Reparo do DNA/genética , Endonucleases/genética , Edição de Genes/métodos , Genômica
16.
Sci Adv ; 8(45): eadd3686, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36351018

RESUMO

The interplay between active biological processes and DNA repair is central to mutagenesis. Here, we show that the ubiquitous process of replication initiation is mutagenic, leaving a specific mutational footprint at thousands of early and efficient replication origins. The observed mutational pattern is consistent with two distinct mechanisms, reflecting the two-step process of origin activation, triggering the formation of DNA breaks at the center of origins and local error-prone DNA synthesis in their immediate vicinity. We demonstrate that these replication initiation-dependent mutational processes exert an influence on phenotypic diversity in humans that is disproportionate to the origins' genomic size: By increasing mutational loads at gene promoters and splice junctions, the presence of an origin significantly influences both gene expression and mRNA isoform usage. Last, we show that mutagenesis at origins not only drives the evolution of origin sequences but also contributes to sculpting regulatory domains of the human genome.


Assuntos
Replicação do DNA , Genoma Humano , Humanos , Origem de Replicação , Mutação , Mutagênese
17.
BMC Chem ; 15(1): 51, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521464

RESUMO

BACKGROUND: Local sequence context is known to have an impact on the mutational pattern seen in cancer. The RAS genes and a smoking carcinogen, Benzo[a]pyrene diol epoxide (BPDE), have been utilised to explore these context effects. BPDE is known to form an adduct at the guanines in a number of RAS gene sites, KRAS codons 12, 13 and 14, NRAS codon 12, and HRAS codons 12 and 14. RESULTS: Molecular modelling techniques, along with multivariate analysis, have been utilised to determine the sequence influenced differences between BPDE-adducted RAS gene sequences as well as the local distortion caused by the adducts. CONCLUSIONS: We conclude that G:C > T:A mutations at KRAS codon 12 in the tumours of lung cancer patients (who smoke), proposed to be predominantly caused by BPDE, are due to the effect of the interaction methyl group at the C5 position of the thymine base in the KRAS sequence with the BPDE carcinogen investigated causing increased distortion. We further suggest methylated cytosine would have a similar effect, showing the importance of methylation in cancer development.

18.
DNA Repair (Amst) ; 8(2): 146-52, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19041427

RESUMO

A typical view of how DNA repair functions in chromatin usually depicts a struggle in which the DNA repair machinery battles to overcome the inhibitory effect of chromatin on the repair process. It may be that in this current interpretation the repair mechanisms are 'tilting at windmills', fighting an imaginary foe. An emerging picture suggests that we should not consider chromatin as an inhibitory force to be overcome like some quixotic giant by the DNA repair processes. Instead we should now recognize that DNA repair and chromatin metabolism are inextricably and mechanistically linked. Here we discuss the latest findings which are beginning to reveal how changes in chromatin dynamics integrate with the DNA repair process in response to UV induced DNA damage, with an emphasis on events in the yeast Saccharomyces cerevisiae.


Assuntos
Cromossomos/metabolismo , Reparo do DNA , DNA/metabolismo , Animais , Cromatina/metabolismo , Dano ao DNA , Genoma/genética , Humanos
19.
Methods ; 48(1): 23-34, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19269326

RESUMO

In recent years a great deal of progress has been made in understanding how the various DNA repair mechanisms function when DNA is assembled into chromatin. In the case of nucleotide excision repair, a core group of DNA repair proteins is required in vitro to observe DNA repair activity in damaged DNA devoid of chromatin structure. This group of proteins is not sufficient to promote repair in the same DNA when assembled into nucleosomes; the first level of chromatin compaction. Clearly other factors are required for efficient DNA repair of chromatin. For some time chromatin has been considered a barrier to be overcome, and inhibitory to DNA metabolic processes including DNA repair. However, an emerging picture suggests a fascinating link at the interface of chromatin metabolism and DNA repair. In this view these two fundamental processes are mechanistically intertwined and function in concert to bring about regulated DNA repair throughout the genome. Light from the darkness has come as a result of many elegant studies performed by a number of research groups. Here we describe two techniques developed in our laboratories which we hope have contributed to our understanding in this arena.


Assuntos
Reparo do DNA , Nucleossomos , Nucleotídeos/genética , Cromatina/metabolismo , Dano ao DNA , DNA Fúngico/genética , Modelos Genéticos , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Raios Ultravioleta
20.
Cell Death Differ ; 27(12): 3337-3353, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32587379

RESUMO

Despite recent advances in our understanding of the function of long noncoding RNAs (lncRNAs), their roles and functions in DNA repair pathways remain poorly understood. By screening a panel of uncharacterized lncRNAs to identify those whose transcription is induced by double-strand breaks (DSBs), we identified a novel lncRNA referred to as LRIK that interacts with Ku, which enhances the ability of the Ku heterodimer to detect the presence of DSBs. Here, we show that depletion of LRIK generates significantly enhanced sensitivity to DSB-inducing agents and reduced DSB repair efficiency. In response to DSBs, LRIK enhances the recruitment of repair factors at DSB sites and facilitates γH2AX signaling. Our results demonstrate that LRIK is necessary for efficient repairing DSBs via nonhomologous end-joining pathway.


Assuntos
Reparo do DNA por Junção de Extremidades/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Autoantígeno Ku/metabolismo , RNA Longo não Codificante/genética , Células A549 , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Autoantígeno Ku/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA