Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901876

RESUMO

The second leading cause of death in the world is cancer. Mitogen-activated protein kinase (MAPK) and extracellular signal-regulated protein kinase (ERK) 1 and 2 (MEK1/2) stand out among the different anticancer therapeutic targets. Many MEK1/2 inhibitors are approved and widely used as anticancer drugs. The class of natural compounds known as flavonoids is well-known for their therapeutic potential. In this study, we focus on discovering novel inhibitors of MEK2 from flavonoids using virtual screening, molecular docking analyses, pharmacokinetic prediction, and molecular dynamics (MD) simulations. A library of drug-like flavonoids containing 1289 chemical compounds prepared in-house was screened against the MEK2 allosteric site using molecular docking. The ten highest-scoring compounds based on docking binding affinity (highest score: -11.3 kcal/mol) were selected for further analysis. Lipinski's rule of five was used to test their drug-likeness, followed by ADMET predictions to study their pharmacokinetic properties. The stability of the best-docked flavonoid complex with MEK2 was examined for a 150 ns MD simulation. The proposed flavonoids are suggested as potential inhibitors of MEK2 and drug candidates for cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Flavonoides , Simulação de Acoplamento Molecular , Antineoplásicos/química , Simulação de Dinâmica Molecular
2.
J Neurovirol ; 27(5): 755-773, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34550543

RESUMO

HIV-1 transactivator of transcription (Tat) protein is required for HIV-1 replication, and it has been implicated in the pathogenesis of HIV-1-associated neurocognitive disorder (HAND). HIV-1 Tat can enter cells via receptor-mediated endocytosis where it can reside in endolysosomes; upon its escape from these acidic organelles, HIV-1 Tat can enter the cytosol and nucleus where it activates the HIV-1 LTR promoter. Although it is known that HIV-1 replication is affected by the iron status of people living with HIV-1 (PLWH), very little is known about how iron affects HIV-1 Tat activation of the HIV-1 LTR promoter. Because HIV-1 proteins de-acidify endolysosomes and endolysosome de-acidification affects subcellular levels and actions of iron, we tested the hypothesis that the endolysosome pool of iron is sufficient to affect Tat-induced HIV-1 LTR transactivation. Ferric (Fe3+) and ferrous (Fe2+) iron both restricted Tat-mediated HIV-1 LTR transactivation. Chelation of endolysosome iron with deferoxamine (DFO) and 2-2 bipyridyl, but not chelation of cytosolic iron with deferiprone and deferasirox, significantly enhanced Tat-mediated HIV-1 LTR transactivation. In the presence of iron, HIV-1 Tat increasingly oligomerized and DFO prevented the oligomerization. DFO also reduced protein expression levels of the HIV-1 restriction agent beta-catenin in the cytosol and nucleus. These findings suggest that DFO increases HIV-1 LTR transactivation by increasing levels of the more active dimeric form of Tat relative to the less active oligomerized form of Tat, increasing the escape of dimeric Tat from endolysosomes, and/or reducing beta-catenin protein expression levels. Thus, intracellular iron might play a significant role in regulating HIV-1 replication, and these findings raise cautionary notes for chelation therapies in PLWH.


Assuntos
HIV-1 , beta Catenina , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/virologia , Infecções por HIV/genética , Infecções por HIV/metabolismo , Repetição Terminal Longa de HIV , HIV-1/genética , HIV-1/metabolismo , Humanos , Ferro/metabolismo , Ativação Transcricional , beta Catenina/genética , beta Catenina/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
3.
Bioorg Chem ; 99: 103842, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32315898

RESUMO

A series of N-trifluoroacetyl-2-pyrazolines have been synthesized via cyclization of chalcones in the presence of trifluoroacetic acid and hydrazine as a base. The method used for the preparation of pyrazolines was found to be an efficient one as all of the compounds were obtained in good yield (up to 79%). Various spectroscopic techniques established the structures and additionally corroborated the compounds 2a and 2e by single crystal X-ray. Newly synthesized pyrazolines were investigated for their potential as antimicrobial agents. Compound 2a displayed promising antimicrobial activity against pathogenic Escherichia coli and Pseudomonas aeruginosa. Furthermore, the mechanism of the antimicrobial activity of 2a was demonstrated with the help of scanning electron microscopy (SEM), which revealed complete damage of the bacterial cell membrane, providing dead cell debris in the milieu. The minimum inhibitory concentration (MIC) observed was 79 and 90 µM against E. coli and P. aeruginosa, respectively. Hence, these compounds might be significantly useful in antimicrobial drug development.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pirazóis/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade
4.
J Appl Toxicol ; 40(10): 1410-1420, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32346888

RESUMO

Globally, more than a billion people smoke tobacco making it one of the biggest public health problems and a leading risk factor for global deaths. Nicotine, the main alkaloid in tobacco, has been shown to be associated with fertility problems in men and women. The adverse effects of tobacco/nicotine on reproduction have been attributed to deleterious effects on gametes, steroidogenic imbalance, and competitive inhibition of steroid receptors. The present study reports the sex-steroid receptor disrupting potential of nicotine and its major metabolite cotinine against the estrogen receptor-α (ERα), ERß, androgen receptor (AR), and progesterone receptor (PR). Both ligands bound in the ligand-binding pockets of ERα, ERß, AR and PR and formed important hydrophobic interactions with different amino-acid residues of receptors. Most of the residues of ERα, ERß, AR and PR interacting with nicotine and cotinine were common with those of native/bound ligands of the receptors. Interacting amino acids most important for binding of nicotine and cotinine with each receptor were identified by loss in accessible surface area. Amino acids Leucine-346, Leucine-384 and Phenylalanine-404 for ERα; Methionine-336, Phenylalanine-356 and Leucine-298 for ERß; and Leucine-704 and Leucine-718, respectively for AR and PR, were the most important residues for binding with nicotine and cotinine. Among the four receptors, based on the number of interactions, nicotine and cotinine had greater potential to interfere in the signaling of ERß. In conclusion, the results suggested that nicotine and cotinine bind and interact with sex-steroid nuclear receptors and have potential to interfere in the steroid hormone signaling resulting in reproductive dysfunction.


Assuntos
Sítios de Ligação/efeitos dos fármacos , Cotinina/toxicidade , Estrutura Molecular , Nicotina/toxicidade , Receptores de Estrogênio/efeitos dos fármacos , Receptores de Progesterona/efeitos dos fármacos , Receptores de Progesterona/metabolismo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Estrogênio/metabolismo , Nicotiana/química
5.
J Cell Biochem ; 120(2): 1328-1339, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30298630

RESUMO

The PI3K/AKT/mTOR pathway is one of the most commonly disrupted signaling pathways that plays a role in the development and pathogenicity of multiple cancers. Therefore, the critical proteins of this pathway have been targeted for anticancer therapy. The scientific community has increasingly been realizing the anti-cancer therapeutic potential of naphthoquinone analogs. These compounds constitute a major class of diverse sets of plant metabolites, which include various natural products and synthetic compounds with proven anticancer activity. The current study involved structural computational biology approaches to explore compounds from a diverse pool of naphthoquinone analogs that can inhibit key cancer-signaling proteins phosphoinositide 3-kinase (PI3K), protein kinase B, PKB (AKT), and mammalian target of rapamycin (mTOR). The novel compound identified commonly among the top 10 dock score lists of PI3K, AKT, and mTOR was selected for further study and proposed as a potential inhibitor of the 3 cancer-signaling proteins and an anticancer agent. Further, to check the docking accuracy and potential of the compound, post docking analyses, namely, binding comparison with the native ligand, the role of the interacting residue role in binding, predicted binding energy and dissociation constant calculations, etc., were performed. All these measures showed good-quality binding, and thus provide weight to our prediction of the novel compound as a pan PI3K/AKT/mTOR inhibitor and an anticancer agent. Finally, to compare the binding and similarity in the active sites of the 3 protein kinases, a ligand-based active site alignment was performed and analyzed. Thus, the study proposed a novel naphthoquinone analog as a potential anticancer drug, and provided comparative structural insight into its binding to the 3 protein kinases.

6.
J Cell Biochem ; 120(1): 182-191, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30230586

RESUMO

Fibroadenoma is the most common type of benign breast tumor, accounting for 90% of benign lesions in India. Somatic mutations in the mediator complex subunit 12 (MED12) gene play a critical role in fibroepithelial tumorigenesis. The current study evaluated the hotspot region encompassing exon 2 of the MED12 gene, in benign and malignant breast tumor tissue from women who presented for breast lump evaluation. A total of 100 (80 fibroadenoma and 20 breast cancer) samples were analyzed by polymerase chain reaction-Sanger sequencing. Sequence variant analysis showed that 68.75% of nucleotide changes were found in exon 2 and the remaining in the adjacent intron 1. Codon 44 was implicated as a hotspot mutation in benign tumors, and 86.36% of the identified mutations involved this codon. An in silico functional analysis of missense mutations using consensus scoring sorting intolerant from tolerant (SIFT), SIFT seq, Polyphen2, Mutation Assessor, SIFT transFIC, Polyphen2 transFIC, Mutation Assesor transFIC, I-Mutant, DUET, PON-PS, SNAP2, and protein variation effect analyzer] revealed that apart from variants involving codon 44 (G44S; G44H), others like V41A and E55D were also predicted to be deleterious. Most of the missense mutations appeared in the loop region of the MED12 protein, which is expected to affect its functional interaction with cyclin C-CDK8/CDK19, causing loss of mediator-associated cyclin depended kinase (CDK) activity. These results suggest a key role of MED12 somatic variations in the pathogenesis of fibroadenoma. For the first time, it was demonstrated that MED12 sequence variations are present in benign breast tumors in the south Indian population.


Assuntos
Neoplasias da Mama/genética , Éxons/genética , Fibroadenoma/genética , Complexo Mediador/química , Complexo Mediador/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Idoso , Sequência de Bases/genética , Criança , Códon/genética , Simulação por Computador , Ciclina C/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Feminino , Humanos , Índia , Íntrons/genética , Aprendizado de Máquina , Pessoa de Meia-Idade , Fenótipo , Polimorfismo Genético , Estrutura Secundária de Proteína , Adulto Jovem
7.
J Cell Biochem ; 120(7): 11318-11330, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30719750

RESUMO

The role of TatD DNases as DNA repair enzymes or cell death (apoptotic) nucleases is well established in prokaryotes as well as eukaryotes. The current study aims to characterize the TatD nuclease from Bacillus anthracis (Ba TatD) and to explore its key histidine catalytic residues. Ba TatD was found to be a metal-dependent, nonspecific endonuclease which could efficiently cleave double-stranded DNA substrates. Moreover, Ba TatD nuclease was observed to be thermostable up to 55°C and act in a wide pH range indicating its industrial applicability. Diethyl pyrocarbonate-based histidine-selective alkylation of the Ba TatD resulted in a loss of its nuclease activity suggesting a crucial role of the histidine residues in its activity. The key residues of Ba TatD were predicted using sequence analysis and structure-based approaches, and then the predicted residues were further tested by mutational analysis. Upon mutational analysis, H128 and H153 have been found to be crucial for Ba TatD activity, though H153 seems to bear an important but a dispensable role for the Ba TatD nuclease. Ba TatD had a uniform expression in the cytosol of B. anthracis, which indicates a significant role of the protein in the pathogen's life cycle. This is the first study to identify and characterize the TatD DNase from B. anthracis and will be helpful in gaining more insights on the role of TatD proteins in Gram-positive bacteria where it remains unexplored.

8.
J Cell Biochem ; 119(2): 2408-2417, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28888036

RESUMO

Surface localized microbial enolases' binding with human plasminogen has been increasingly proven to have an important role in initial infection cycle of several human pathogens. Likewise, surface localized Mycobacterium tuberculosis (Mtb) enolase also binds to human plasminogen, and this interaction may entail crucial consequences for granuloma stability. The current study is the first attempt to explore the plasminogen interacting residues of enolase from Mtb. Beginning with the structural modeling of Mtb enolase, the binding pose of Mtb enolase and human plasminogen was predicted using protein-protein docking simulations. The binding pose revealed the interface region with interacting residues and molecular interactions. Next, the interacting residues were refined and ranked by using various criteria. Finally, the selected interacting residues were tested experimentally for their involvement in plasminogen binding. The two consecutive lysine residues, Lys-193 and Lys-194, turned out to be active residues for plasminogen binding. These residues when substituted for alanine along with the most active residue Lys-429, that is, the triple mutant (K193A + K194A + K429A) Mtb enolase, exhibited 40% reduction in plasminogen binding. It is worth noting that Mtb enolase lost nearly half of the plasminogen binding activity with only three simultaneous substitutions, without any significant secondary structure perturbation. Further, the sequence comparison between Mtb and human enolase isoforms suggests the possibility of selective targeting of Mtb enolase to obstruct binding of human plasminogen.


Assuntos
Mycobacterium tuberculosis/enzimologia , Fosfopiruvato Hidratase/química , Fosfopiruvato Hidratase/metabolismo , Plasminogênio/química , Plasminogênio/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutação , Mycobacterium tuberculosis/genética , Fosfopiruvato Hidratase/genética , Plasminogênio/genética , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína
9.
J Cell Biochem ; 118(12): 4558-4567, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28475291

RESUMO

The mammalian target of rapamycin (mTOR) is a serine-threonine kinase, which regulates cellular metabolism and growth, and is a validated therapeutic target in various cancers. Recently, OSI-027, a selective ATP competitive inhibitor of mTOR, has been developed. The OSI-027 is an orally bioavailable compound whose anti-cancer activities were observed in various cancer cell lines and tumor xenograft models. The current study is the first attempt to explore the binding mode and the molecular-interactions of OSI-027 with mTOR using molecular docking and (un)binding simulation approaches. The study identified various interacting residues and their extent of involvement in binding was emphasized using different methods. The (un)binding simulation analyses provided snapshots of various phases in OSI-027 binding and identified residues important for binding but away from the catalytic site. Further, to explore a better binder for mTOR among OSI-027 analogs, the virtual screening led to propose an OSI-027 analog with CID: 73294902 as a better inhibitor than the OSI-027 and the native ligand PI-103. The binding mode of the proposed compound is compared with those of OSI-027 and other native inhibitors. The comparison of (un)binding simulation phases of proposed compound with that of OSI-027 revealed that both, bound to the same catalytic site, follow different (un)binding path. Thus, the current study presents computational insights into the OSI-027 mediated inhibition of mTOR kinase and proposed an OSI-027 analog as better mTOR inhibitor, and thus, a good drug for further research in experimental laboratories. J. Cell. Biochem. 118: 4558-4567, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Imidazóis/química , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Triazinas/química , Humanos , Imidazóis/farmacologia , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Serina-Treonina Quinases TOR/química , Serina-Treonina Quinases TOR/metabolismo , Triazinas/farmacologia
10.
BMC Genomics ; 17(Suppl 9): 759, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27766960

RESUMO

BACKGROUND: Preterm birth (PTB), birth at <37 weeks of gestation, is a significant global public health problem. World-wide, about 15 million babies are born preterm each year resulting in more than a million deaths of children. Preterm neonates are more prone to problems and need intensive care hospitalization. Health issues may persist through early adulthood and even be carried on to the next generation. Majority (70 %) of PTBs are spontaneous with about a half without any apparent cause and the other half associated with a number of risk factors. Genetic factors are one of the significant risks for PTB. The focus of this review is on single nucleotide gene polymorphisms (SNPs) that are reported to be associated with PTB. RESULTS: A comprehensive evaluation of studies on SNPs known to confer potential risk of PTB was done by performing a targeted PubMed search for the years 2007-2015 and systematically reviewing all relevant studies. Evaluation of 92 studies identified 119 candidate genes with SNPs that had potential association with PTB. The genes were associated with functions of a wide spectrum of tissue and cell types such as endocrine, tissue remodeling, vascular, metabolic, and immune and inflammatory systems. CONCLUSIONS: A number of potential functional candidate gene variants have been reported that predispose women for PTB. Understanding the complex genomic landscape of PTB needs high-throughput genome sequencing methods such as whole-exome sequencing and whole-genome sequencing approaches that will significantly enhance the understanding of PTB. Identification of high risk women, avoidance of possible risk factors, and provision of personalized health care are important to manage PTB.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Nascimento Prematuro/epidemiologia , Nascimento Prematuro/genética , Adulto , Suscetibilidade a Doenças , Feminino , Saúde Global , Humanos , Lactente , Mortalidade Infantil , Recém-Nascido , Morbidade , Gravidez , Fatores de Risco
11.
Bioprocess Biosyst Eng ; 39(5): 807-14, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26861556

RESUMO

Herein, we propose the synthesis and characterization of graphene for the immobilization of ß-galactosidase for improved galacto-oligosaccharide (GOS) production. The size of synthesized graphene was observed to be 25 nm by TEM analysis while interaction of enzyme with the nanosupport was observed by FTIR spectroscopy. Docking was obtained using molecular docking program Dock v.6.5 while the visual analyses and illustration of protein-ligand complex were investigated by utilizing chimera v.1.6.2 and PyMOL v.1.3 softwares. Immobilized ß-galactosidase (IßG) showed improved stability against various physical and chemical denaturants. Km of IßG was increased to 6.41 mM as compared to 2.38 mM of soluble enzyme without bringing significant change in Vmax value. Maximum GOS content also registered an increase in lactose conversion. The maximum GOS production was achieved by immobilized enzyme at specific temperature and time. Hence, the developed nanosupport can be further exploited for developing a biosensor involving ß-galactosidase or for immobilization of other industrially/therapeutically important enzymes.


Assuntos
Grafite/metabolismo , beta-Galactosidase/metabolismo , Aspergillus oryzae/enzimologia , Cinética , Microscopia Eletrônica de Transmissão , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Sci Rep ; 14(1): 13875, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38880829

RESUMO

After obtaining an exact regular-AdS black hole resulting from the coupling of general relativity with nonlinear electrodynamics (NED), we explore the thermodynamics of the extended phase space, treating the cosmological constant ( Λ ) as the pressure (P) of the black holes and its conjugate as thermodynamic volume (V). Considering the NED parameter (g), we investigate the Hawking temperature, entropy, Gibb's free energy and specific heat at the horizon radius. Due to the presence of NED charge, the black hole exhibits van der Waals-like phase transition instead of Hawking-Page phase transition, which could be observed through the G - T plots, which display a swallowtail pattern below the critical pressure, and it gives rise to second-order phase transitions when pressure attains its critical value. The first-order phase transition shares similarities with the liquid-gas phase transition. We determine the exact critical points and explore the influence of NED on P - V criticality, revealing that the isotherms undergo a liquid-gas-like phase transition for temperatures below its critical value T C , especially at lower T C . The identical critical exponent to that of the van der Waals fluid suggests that the NED does not alter the critical exponents, as observed in other arbitrary AdS black holes.

13.
J Biomol Struct Dyn ; 41(14): 6909-6916, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36184598

RESUMO

The protein galectin, which binds to carbohydrates and is involved in a number of therapeutic processes including cell proliferation, inflammatory responses, apoptosis, etc., has been discovered as a potential therapeutic target. Galectin-3 is a stable biomarker that exhibits both increased and decreased expression in a variety of illnesses and infections, regardless of sex, age, or body mass index. The goal of the current study is to apply bioinformatics techniques to examine the possibility of cardiovascular medications to inhibit Galectin-3-related biological activities. Unsupervised clustering techniques, molecular docking, and guided molecular dynamics (MD) simulation were used to create a computational pipeline that was used to screen potential chemical compounds from a library of chemical compounds with related molecular fingerprints. Utilizing input factors such as gene expression, mode of action, and chemical descriptors, clustering enables prioritization of medicinal molecules. Twenty-four compounds were screened and repurposed against Galectin-3 utilizing molecular docking as part of the cluster-facilitated virtual screening technique. The polar interactions that Arg144, Glu184, Arg162, His158, and Asn174 have with Bufalin, Cymarin, and Ouabalin have the highest binding affinities, according to docking studies. Studies using MD simulations confirm the tested compounds' ability to inhibit Galectin-3. Galactin-3 targeted experimental and in vivo animal model-based validation studies using Bufalin, Cymarin, and Ouabalin are also necessary.Communicated by Ramaswamy H. Sarma.

14.
PLoS One ; 18(11): e0293666, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37943817

RESUMO

The primary objective of this study is to uncover novel therapeutic agents for the treatment of Glioblastoma Multiforme (GBM), a highly aggressive form of brain cancer, and Alzheimer's Disease (AD). Given the complexity and resistance associated with both conditions, the study underscores the imperative need for therapeutic alternatives that can traverse the biological intricacies inherent in both neuro-oncological and neurodegenerative disorders. To achieve this, a meticulous, target-based virtual screening was employed on an ensemble of 50 flavonoids and polyphenol derivatives primarily derived from plant sources. The screening focused predominantly on molecular targets pertinent to GBM but also evaluated the potential overlap with neural pathways involved in AD. The study utilized molecular docking and Molecular Dynamic (MD) simulation techniques to analyze the interaction of these compounds with a key biological target, protein tyrosine phosphatase receptor-type Z (PTPRZ). Out of the 50 compounds examined, 10 met our stringent criteria for binding affinity and specificity. Subsequently, the highest value of binding energy was observed for the synergistic binding of luteolin and ferulic acid with the value of -10.5 kcal/mol. Both compounds exhibited inherent neuroprotective properties and demonstrated significant potential as pathway inhibitors in GBM as well as molecular modulators in AD. Drawing upon advanced in-silico cytotoxicity predictions and sophisticated molecular modeling techniques, this study casts a spotlight on the therapeutic capabilities of polyphenols against GBM. Furthermore, our findings suggest that leveraging these compounds could catalyze a much-needed paradigm shift towards more integrative therapeutic approaches that span the breadth of both neuro-oncology and neurodegenerative diseases. The identification of cross-therapeutic potential in flavonoids and polyphenols could drastically broaden the scope of treatment modalities against both fatal diseases.


Assuntos
Angelica sinensis , Cannabis , Glioblastoma , Humanos , Simulação de Acoplamento Molecular , Luteolina/farmacologia , Glioblastoma/tratamento farmacológico , Simulação de Dinâmica Molecular
15.
Front Pharmacol ; 14: 1236173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900167

RESUMO

Cancer has been one of the leading causes of mortality worldwide over the past few years. Some progress has been made in the development of more effective cancer therapeutics, resulting in improved survival rates. However, the desired outcome in the form of successful treatment is yet to be achieved. There is high demand for the development of innovative, inexpensive, and effective anticancer treatments using natural resources. Natural compounds have been increasingly discovered and used for cancer therapy owing to their high molecular diversity, novel biofunctionality, and minimal side effects. These compounds can be utilized as chemopreventive agents because they can efficiently inhibit cell growth, control cell cycle progression, and block several tumor-promoting signaling pathways. PI3K is an important upstream protein of the PI3K-Akt-mTOR pathway and a well-established cancer therapeutic target. This study aimed to explore the small molecules, natural flavonoids, viz. quercetin, luteolin, kaempferol, genistein, wogonin, daidzein, and flavopiridol for PI3Kγ kinase activity inhibition. In this study, the binding pose, interacting residues, molecular interactions, binding energies, and dissociation constants were investigated. Our results showed that these flavonoids bound well with PI3Kγ with adequate binding strength scores and binding energy ranging from (-8.19 to -8.97 Kcal/mol). Among the explored ligands, flavopiridol showed the highest binding energy of -8.97 Kcal/mol, dock score (-44.40), and dissociation constant term, pKd of 6.58 against PI3Kγ. Based on the above results, the stability of the most promising ligand, flavopiridol, against PI3Kγ was evaluated by molecular dynamics simulations for 200 ns, confirming the stable flavopiridol and PI3Kγ complex. Our study suggests that among the selected flavonoids specifically flavopiridol may act as potential inhibitors of PI3Kγ and could be a therapeutic alternative to inhibit the PI3Kγ pathway, providing new insights into rational drug discovery research for cancer therapy.

16.
Sci Rep ; 13(1): 17684, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848584

RESUMO

Bruton's tyrosine kinase (BTK) is a non-receptor protein kinase that plays a crucial role in various biological processes, including immune system function and cancer development. Therefore, inhibition of BTK has been proposed as a therapeutic strategy for various complex diseases. In this study, we aimed to identify potential inhibitors of BTK by using a drug repurposing approach. To identify potential inhibitors, we performed a molecular docking-based virtual screening using a library of repurposed drugs from DrugBank. We then used various filtrations followed by molecular dynamics (MD) simulations, principal component analysis (PCA), and Molecular Mechanics Poisson Boltzmann Surface Area (MM-PBSA) analysis to further evaluate the binding interactions and stability of the top-ranking compounds. Molecular docking-based virtual screening approach identified several repurposed drugs as potential BTK inhibitors, including Eltrombopag and Alectinib, which have already been approved for human use. All-atom MD simulations provided insights into the binding interactions and stability of the identified compounds, which will be helpful for further experimental validation and optimization. Overall, our study demonstrates that drug repurposing is a promising approach to identify potential inhibitors of BTK and highlights the importance of computational methods in drug discovery.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Reposicionamento de Medicamentos , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases , Humanos , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Descoberta de Drogas , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/uso terapêutico
17.
Front Pharmacol ; 14: 1231671, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273823

RESUMO

The epidermal growth factor receptor (EGFR) plays a crucial role in regulating cellular growth and survival, and its dysregulation is implicated in various cancers, making it a prime target for cancer therapy. Natural compounds known as catechins have garnered attention as promising anticancer agents. These compounds exert their anticancer effects through diverse mechanisms, primarily by inhibiting receptor tyrosine kinases (RTKs), a protein family that includes the notable member EGFR. Catechins, characterized by two chiral centers and stereoisomerism, demonstrate variations in chemical and physical properties due to differences in the spatial orientation of atoms. Although previous studies have explored the membrane fluidity effects and transport across cellular membranes, the stereo-selectivity of catechins concerning EGFR kinase inhibition remains unexplored. In this study, we investigated the stereo-selectivity of catechins in inhibiting EGFR kinase, both in its wild-type and in the prevalent L858R mutant. Computational analyses indicated that all stereoisomers, including the extensively studied catechin (-)-EGCG, effectively bound within the ATP-binding site, potentially inhibiting EGFR kinase activity. Notably, gallated catechins emerged as superior EGFR inhibitors to their non-gallated counterparts, revealing intriguing binding trends. The top four stereoisomers exhibiting high dock scores and binding energies with wild-type EGFR comprise (-)-CG (-)-GCG (+)-CG, and (-)-EGCG. To assess dynamic behavior and stability, molecular dynamics simulations over 100 ns were conducted for the top-ranked catechin (-)-CG and the widely investigated catechin (-)-EGCG with EGFR kinase. This study enhances our understanding of how the stereoisomeric nature of a drug influences inhibitory potential, providing insights that could guide the selection of specific stereoisomers for improved efficacy inexisting drugs.

18.
J Biomol Struct Dyn ; 41(19): 10202-10213, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36562191

RESUMO

Cyclin-dependent kinase 9 (CDK9) is a transcription-associated protein involved in controlling the cell cycle and is often deregulated in stress conditions. CDK9 is being studied as a well-known druggable target for developing effective therapeutics against a wide range of cancer, cardiac dysfunction and inflammatory diseases. Owing to the significance of CDK9 in the etiology of hematological and solid malignancies, its structure, biological activity, regulation and its pharmacological inhibition are being explored for therapeutic management of cancer. We employed a structure-based virtual high-throughput screening of bioactive compounds from the IMPPAT database to discover potential bioactive inhibitors of CDK9. The preliminary results were obtained from the Lipinski criteria, ADMET parameters and sorting compounds without any PAINS patterns. Subsequently, binding affinity and selectivity analyses were used to find effective CDK9 hits. This screening resulted in the identification of two natural compounds, Glabrene and Guggulsterone with high affinity and specificity for the CDK9 binding site. Both compounds exhibit drug-like characteristics, as projected by ADMET analysis, physicochemical data and PASS evaluation. Both compounds preferentially bind to the ATP-binding pocket of CDK9 and interact with functionally important residues. Further, the dynamics and consistency of CDK9 interaction with Glabrene and Guggulsteron were evaluated through all-atom molecular dynamic (MD) simulations which suggested the stability of both complexes. The results might be deployed to introduce novel CDK9 inhibitors that may treat life-threatening diseases, including cancer.Communicated by Ramaswamy H. Sarma.


Assuntos
Quinase 9 Dependente de Ciclina , Neoplasias , Humanos , Simulação de Acoplamento Molecular , Quinase 9 Dependente de Ciclina/química , Quinase 9 Dependente de Ciclina/metabolismo , Inibidores de Proteínas Quinases/química , Simulação de Dinâmica Molecular
19.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35215307

RESUMO

The Mitogen-Activated Protein Kinase (MAPK) signaling pathway plays an important role in cancer cell proliferation and survival. MAPKs' protein kinases MEK1/2 serve as important targets in drug designing against cancer. The natural compounds' flavonoids are known for their anticancer activity. This study aims to explore flavonoids for their inhibition ability, targeting MEK1 using virtual screening, molecular docking, ADMET prediction, and molecular dynamics (MD) simulations. Flavonoids (n = 1289) were virtually screened using molecular docking and have revealed possible inhibitors of MEK1. The top five scoring flavonoids based on binding affinity (highest score for MEK1 is -10.8 kcal/mol) have been selected for further protein-ligand interaction analysis. Lipinski's rule (drug-likeness) and absorption, distribution, metabolism, excretion, and toxicity predictions were followed to find a good balance of potency. The selected flavonoids of MEK1 have been refined with 30 (ns) molecular dynamics (MD) simulation. The five selected flavonoids are strongly suggested to be promising potent inhibitors for drug development as anticancer therapeutics of the therapeutic target MEK1.

20.
J Indian Soc Periodontol ; 26(4): 412-417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959300

RESUMO

Formation of black triangles due to the loss of interdental papilla is one of the utmost perplexing esthetic problems of the periodontium. Many surgical and nonsurgical treatment options have been researched upon to obtain complete papillary fill, but minimally invasive procedures have always been the choice of treatment both for the operator as well as the patient. This article describes the use of injectable platelet-rich fibrin (i-PRF) as a novel nonsurgical technique for the reconstruction of deficient interdental papilla. This is probably the first article that describes the use of i-PRF for the nonsurgical treatment of black triangles. Six sites with the presence of deficient interdental papilla in four patients were selected for this case series. After completion and reevaluation of scaling and root planing, autologous i-PRF was injected at the base of the interdental papilla using the insulin syringe. Photographs obtained before the treatment and at 1, 3, and 6 months after the intervention were assessed by Image J software along with clinical measurements. The use of novel nonsurgical injectable PRF technique allows clinician to successfully treat deficient interdental papilla.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA