Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298246

RESUMO

In the thyroid gland, cysteine cathepsins are secreted upon thyrotropin stimulation for thyroglobulin processing, and they are present at the primary cilia of thyroid epithelial cells. Treatment with protease inhibitors resulted in the loss of cilia from rodent thyrocytes and caused redistribution of the thyroid co-regulating G protein-coupled receptor Taar1 to the endoplasmic reticulum. These findings suggest that ciliary cysteine cathepsins are important to maintain sensory and signaling properties for the proper regulation and homeostasis of thyroid follicles. Therefore, it is important to better understand how cilia structure and frequencies are maintained in human thyroid epithelial cells. Hence, we aimed to investigate the potential role of cysteine cathepsins for the maintenance of primary cilia in the normal human Nthy-ori 3-1 thyroid cell line. This was approached by determining cilia lengths and frequencies in cysteine peptidase inhibition conditions in Nthy-ori 3-1 cell cultures. Cilia lengths were shortened upon 5 h of cysteine peptidase inhibition with cell-impermeable E64. Likewise, cilia lengths and frequencies were decreased upon additional overnight treatment with the cysteine peptidase-targeting, activity-based probe DCG-04. The results suggest that cysteine cathepsin activity is required for the maintenance of the cellular protrusions not only in rodents, but also in human thyrocytes. Hence, thyrotropin stimulation was used to simulate physiological conditions that eventually lead to cathepsin-mediated thyroglobulin proteolysis, which is initiated in the thyroid follicle lumen. Immunoblotting revealed that thyrotropin stimulation conditions result in the secretion of little procathepsin L and some pro- and mature cathepsin S but no cathepsin B from the human Nthy-ori 3-1 cells. Unexpectedly, however, 24 h incubation periods with thyrotropin shortened the cilia although higher amounts of cysteine cathepsins were present in the conditioned media. These data point to the necessity of further studies to delineate which of the cysteine cathepsins plays the most prominent role in cilia shortening and/or elongation. Collectively, the results of our study provide corroboration for the hypothesis of thyroid autoregulation by local mechanisms that our group previously proposed.


Assuntos
Tireoglobulina , Tireotropina , Humanos , Tireoglobulina/metabolismo , Tireotropina/farmacologia , Tireotropina/metabolismo , Cílios/metabolismo , Cisteína/metabolismo , Glândula Tireoide/metabolismo
2.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071318

RESUMO

Cathepsin K-mediated thyroglobulin proteolysis contributes to thyroid hormone (TH) liberation, while TH transporters like Mct8 and Mct10 ensure TH release from thyroid follicles into the blood circulation. Thus, thyroid stimulating hormone (TSH) released upon TH demand binds to TSH receptors of thyrocytes, where it triggers Gαq-mediated short-term effects like cathepsin-mediated thyroglobulin utilization, and Gαs-mediated long-term signaling responses like thyroglobulin biosynthesis and thyrocyte proliferation. As reported recently, mice lacking Mct8 and Mct10 on a cathepsin K-deficient background exhibit excessive thyroglobulin proteolysis hinting towards altered TSH receptor signaling. Indeed, a combination of canonical basolateral and non-canonical vesicular TSH receptor localization was observed in Ctsk-/-/Mct8-/y/Mct10-/- mice, which implies prolonged Gαs-mediated signaling since endo-lysosomal down-regulation of the TSH receptor was not detected. Inspection of single knockout genotypes revealed that the TSH receptor localizes basolaterally in Ctsk-/- and Mct8-/y mice, whereas its localization is restricted to vesicles in Mct10-/- thyrocytes. The additional lack of cathepsin K reverses this effect, because Ctsk-/-/Mct10-/- mice display TSH receptors basolaterally, thereby indicating that cathepsin K and Mct10 contribute to TSH receptor homeostasis by maintaining its canonical localization in thyrocytes. Moreover, Mct10-/- mice displayed reduced numbers of dead thyrocytes, while their thyroid gland morphology was comparable to wild-type controls. In contrast, Mct8-/y, Mct8-/y/Mct10-/-, and Ctsk-/-/Mct8-/y/Mct10-/- mice showed enlarged thyroid follicles and increased cell death, indicating that Mct8 deficiency results in altered thyroid morphology. We conclude that vesicular TSH receptor localization does not result in different thyroid tissue architecture; however, Mct10 deficiency possibly modulates TSH receptor signaling for regulating thyrocyte survival.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Receptores da Tireotropina/metabolismo , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/deficiência , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Catepsina K/deficiência , Catepsina K/genética , Catepsina K/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Tireoglobulina/metabolismo , Glândula Tireoide/citologia , Hormônios Tireóideos/metabolismo , Tireotropina/sangue , Tireotropina/metabolismo
3.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466458

RESUMO

The thyroid gland is both a thyroid hormone (TH) generating as well as a TH responsive organ. It is hence crucial that cathepsin-mediated proteolytic cleavage of the precursor thyroglobulin is regulated and integrated with the subsequent export of TH into the blood circulation, which is enabled by TH transporters such as monocarboxylate transporters Mct8 and Mct10. Previously, we showed that cathepsin K-deficient mice exhibit the phenomenon of functional compensation through cathepsin L upregulation, which is independent of the canonical hypothalamus-pituitary-thyroid axis, thus, due to auto-regulation. Since these animals also feature enhanced Mct8 expression, we aimed to understand if TH transporters are part of the thyroid auto-regulatory mechanisms. Therefore, we analyzed phenotypic differences in thyroid function arising from combined cathepsin K and TH transporter deficiencies, i.e., in Ctsk-/-/Mct10-/-, Ctsk-/-/Mct8-/y, and Ctsk-/-/Mct8-/y/Mct10-/-. Despite the impaired TH export, thyroglobulin degradation was enhanced in the mice lacking Mct8, particularly in the triple-deficient genotype, due to increased cathepsin amounts and enhanced cysteine peptidase activities, leading to ongoing thyroglobulin proteolysis for TH liberation, eventually causing self-thyrotoxic thyroid states. The increased cathepsin amounts were a consequence of autophagy-mediated lysosomal biogenesis that is possibly triggered due to the stress accompanying intrathyroidal TH accumulation, in particular in the Ctsk-/-/Mct8-/y/Mct10-/- animals. Collectively, our data points to the notion that the absence of cathepsin K and Mct8 leads to excessive thyroglobulin degradation and TH liberation in a non-classical pathway of thyroid auto-regulation.


Assuntos
Autofagia/fisiologia , Catepsina K/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Tireoglobulina/metabolismo , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Transporte Biológico , Catepsina L/metabolismo , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hipófise/metabolismo
4.
Cell Mol Neurobiol ; 40(5): 695-710, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31808010

RESUMO

Cathepsin K deficiency in male mice (Ctsk-/-) results in decreased numbers of hippocampal astrocytes and altered neuronal patterning as well as learning and memory deficits. Additionally, cathepsin K carries essential roles in the thyroid gland where it contributes to the liberation of thyroid hormones (TH). Because TH are essential for brain development, in particular for the cerebellum, we investigated whether cathepsin K's function in the thyroid is directly linked to the brain phenotype of Ctsk-/- mice. Serum levels of thyroid stimulating hormone, brain concentrations of free TH, and deiodinase 2 (Dio2) activity in brain parenchyma as well as cerebellar development were comparable in Ctsk-/- and WT animals, suggesting regular thyroid states and TH metabolism. Despite unaltered transcript levels, protein expression of two TH transporters was enhanced in specific brain regions in Ctsk-/- mice, suggesting altered TH supply to these regions. Thyrotropin releasing hormone (Trh) mRNA levels were enhanced threefold in the hippocampus of Ctsk-/- mice. In the striatum of Ctsk-/- mice the mRNA for Dio2 and hairless were approximately 1.3-fold enhanced, while mRNA levels for monocarboxylate transporter 8 and Trh were reduced to 60% and 40%, respectively, pointing to altered striatal physiology. We conclude that the role of cathepsin K in the thyroid gland is not directly associated with its function in the central nervous system (CNS) of mice. Future studies will show whether the brain region-specific alterations in Trh mRNA may eventually result in altered neuroprotection that could explain the neurobehavioral defects of Ctsk-/- mice.


Assuntos
Catepsina K/fisiologia , Sistema Nervoso Central/enzimologia , Glândula Tireoide/enzimologia , Animais , Catepsina K/genética , Cerebelo/enzimologia , Cerebelo/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/análise , Tireotropina/sangue , Tiroxina/sangue , Tri-Iodotironina/sangue
5.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266306

RESUMO

The significance of cysteine cathepsins for the liberation of thyroid hormones from the precursor thyroglobulin was previously shown by in vivo and in vitro studies. Cathepsin L is most important for thyroglobulin processing in mice. The present study aims at specifying the possible contribution of its closest relative, cysteine cathepsin L2/V, to thyroid function. Immunofluorescence analysis on normal human thyroid tissue revealed its predominant localization at the apical plasma membrane of thyrocytes and within the follicle lumen, indicating the secretion of cathepsin V and extracellular tasks rather than its acting within endo-lysosomes. To explore the trafficking pathways of cathepsin V in more detail, a chimeric protein consisting of human cathepsin V tagged with green fluorescent protein (GFP) was stably expressed in the Nthy-ori 3-1 thyroid epithelial cell line. Colocalization studies with compartment-specific markers and analyses of post-translational modifications revealed that the chimeric protein was sorted into the lumen of the endoplasmic reticulum and subsequently transported to the Golgi apparatus, while being N-glycosylated. Immunoblotting showed that the chimeric protein reached endo-lysosomes and it became secreted from the transduced cells. Astonishingly, thyroid stimulating hormone (TSH)-induced secretion of GFP-tagged cathepsin V occurred as the proform, suggesting that TSH upregulates its transport to the plasma membrane before it reaches endo-lysosomes for maturation. The proform of cathepsin V was found to be reactive with the activity-based probe DCG-04, suggesting that it possesses catalytic activity. We propose that TSH-stimulated secretion of procathepsin V is the default pathway in the thyroid to enable its contribution to thyroglobulin processing by extracellular means.


Assuntos
Catepsinas/biossíntese , Células Epiteliais da Tireoide/metabolismo , Tireotropina/metabolismo , Sequência de Aminoácidos , Biomarcadores , Catepsinas/química , Catepsinas/genética , Linhagem Celular , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Imunofluorescência , Expressão Gênica , Genes Reporter , Glicosilação , Humanos , Lisossomos/metabolismo , Transporte Proteico , Glândula Tireoide/metabolismo
6.
Int J Mol Sci ; 21(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575583

RESUMO

Kallikrein-related peptidases (KLKs) and matrix metalloproteinases (MMPs) are secretory proteinases known to proteolytically process components of the extracellular matrix, modulating the pericellular environment in physiology and in pathologies. The interconnection between these families remains elusive. To assess the cross-activation of these families, we developed a peptide, fusion protein-based exposition system (Cleavage of exposed amino acid sequences, CleavEx) aiming at investigating the potential of KLK14 to recognize and hydrolyze proMMP sequences. Initial assessment identified ten MMP activation domain sequences which were validated by Edman degradation. The analysis revealed that membrane-type MMPs (MT-MMPs) are targeted by KLK14 for activation. Correspondingly, proMMP14-17 were investigated in vitro and found to be effectively processed by KLK14. Again, the expected neo-N-termini of the activated MT-MMPs was confirmed by Edman degradation. The effectiveness of proMMP activation was analyzed by gelatin zymography, confirming the release of fully active, mature MT-MMPs upon KLK14 treatment. Lastly, MMP14 was shown to be processed on the cell surface by KLK14 using murine fibroblasts overexpressing human MMP14. Herein, we propose KLK14-mediated selective activation of cell-membrane located MT-MMPs as an additional layer of their regulation. As both, KLKs and MT-MMPs, are implicated in cancer, their cross-activation may constitute an important factor in tumor progression and metastasis.


Assuntos
Precursores Enzimáticos/metabolismo , Calicreínas/genética , Calicreínas/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Hidrólise , Calicreínas/química , Metaloproteinase 14 da Matriz/genética , Camundongos , Porphyromonas gingivalis , Engenharia de Proteínas , Proteínas Recombinantes/metabolismo
7.
Cell Mol Life Sci ; 75(12): 2227-2239, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29290039

RESUMO

G-protein-coupled receptors (GPCRs) can constitute complexes with non-GPCR integral membrane proteins, while such interaction has not been demonstrated at a single molecule level so far. We here investigated the potential interaction between the thyrotropin receptor (TSHR) and the monocarboxylate transporter 8 (MCT8), a member of the major facilitator superfamily (MFS), using fluorescence cross-correlation spectroscopy (FCCS). Both the proteins are expressed endogenously on the basolateral plasma membrane of the thyrocytes and are involved in stimulation of thyroid hormone production and release. Indeed, we demonstrate strong interaction between both the proteins which causes a suppressed activation of Gq/11 by TSH-stimulated TSHR. Thus, we provide not only evidence for a novel interaction between the TSHR and MCT8, but could also prove this interaction on a single molecule level. Moreover, this interaction forces biased signaling at the TSHR. These results are of general interest for both the GPCR and the MFS research fields.


Assuntos
Transportadores de Ácidos Monocarboxílicos/metabolismo , Mapas de Interação de Proteínas , Receptores da Tireotropina/metabolismo , Animais , Células COS , Chlorocebus aethiops , Expressão Gênica , Células HEK293 , Humanos , Transportadores de Ácidos Monocarboxílicos/análise , Transportadores de Ácidos Monocarboxílicos/genética , Multimerização Proteica , Receptores da Tireotropina/análise , Receptores da Tireotropina/genética , Transdução de Sinais , Simportadores , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia
8.
Int J Mol Sci ; 20(7)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925705

RESUMO

Kallikrein 13 (KLK13) was first identified as an enzyme that is downregulated in a subset of breast tumors. This serine protease has since been implicated in a number of pathological processes including ovarian, lung and gastric cancers. Here we report the design, synthesis and deconvolution of libraries of internally quenched fluorogenic peptide substrates to determine the specificity of substrate binding subsites of KLK13 in prime and non-prime regions (according to the Schechter and Berger convention). The substrate with the consensus sequential motive ABZ-Val-Arg-Phe-Arg-ANB-NH2 demonstrated selectivity towards KLK13 and was successfully converted into an activity-based probe by the incorporation of a chloromethylketone warhead and biotin bait. The compounds described may serve as suitable tools to detect KLK13 activity in diverse biological samples, as exemplified by overexpression experiments and targeted labeling of KLK13 in cell lysates and saliva. In addition, we describe the development of selective activity-based probes targeting KLK13, to our knowledge the first tool to analyze the presence of the active enzyme in biological samples.


Assuntos
Ensaios Enzimáticos/métodos , Calicreínas/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Humanos , Cinética , Neoplasias/enzimologia , Biblioteca de Peptídeos , Peptídeos/química , Proteínas Recombinantes/análise , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
9.
RNA Biol ; 13(10): 1000-1010, 2016 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-27416267

RESUMO

The maturation pathways of microRNAs (miRNAs) have been delineated for plants and several animals, belonging to the evolutionary supergroups of Archaeplastida and Opisthokonta, respectively. Recently, we reported the discovery of the microprocessor complex in Dictyostelium discoideum of the Amoebozoa supergroup. The complex is composed of the Dicer DrnB and the dsRBD (double-stranded RNA binding domain) containing protein RbdB. Both proteins localize at nucleoli, where they physically interact, and both are required for miRNA maturation. Here we show that the miRNA phenotype of a ΔdrnB gene deletion strain can be rescued by ectopic expression of a series of DrnB GFP fusion proteins, which consistently showed punctate perinucleolar localization in fluorescence microscopy. These punctate foci appear surprisingly stable, as they persist both disintegration of nucleoli and degradation of cellular nucleic acids. We observed that DrnB expression levels influence the number of microprocessor foci and alter RbdB accumulation. An investigation of DrnB variants revealed that its newly identified nuclear localization signal is necessary, but not sufficient for the perinucleolar localization. Biogenesis of miRNAs, which are RNA Pol II transcripts, is correlated with that localization. Besides its bidentate RNase III domains, DrnB contains only a dsRBD, which surprisingly is dispensable for miRNA maturation. This dsRBD can, however, functionally replace the homologous domain in RbdB. Based on the unique setup of the Dictyostelium microprocessor with a subcellular localization similar to plants, but a protein domain composition similar to animals, we propose a model for the evolutionary origin of RNase III proteins acting in miRNA maturation.

10.
Int J Mol Sci ; 15(11): 20638-55, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25391046

RESUMO

The thyroid hormone derivative 3-iodothyronamine (3-T1AM) exerts metabolic effects in vivo that contradict known effects of thyroid hormones. 3-T1AM acts as a trace amine-associated receptor 1 (TAAR1) agonist and activates G(s) signaling in vitro. Interestingly, 3-T1AM-meditated in vivo effects persist in Taar1 knockout-mice indicating that further targets of 3-T1AM might exist. Here, we investigated another member of the TAAR family, the only scarcely studied mouse and human trace-amine-associated receptor 8 (Taar8b, TAAR8). By RT-qPCR and locked-nucleic-acid (LNA) in situ hybridization, Taar8b expression in different mouse tissues was analyzed. Functionally, we characterized TAAR8 and Taar8b with regard to cell surface expression and signaling via different G-protein-mediated pathways. Cell surface expression was verified by ELISA, and cAMP accumulation was quantified by AlphaScreen for detection of G(s) and/or G(i/o) signaling. Activation of G-proteins G(q/11) and G(12/13) was analyzed by reporter gene assays. Expression analyses revealed at most marginal Taar8b expression and no gender differences for almost all analyzed tissues. In heart, LNA-in situ hybridization demonstrated the absence of Taar8b expression. We could not identify 3-T1AM as a ligand for TAAR8 and Taar8b, but both receptors were characterized by a basal G(i/o) signaling activity, a so far unknown signaling pathway for TAARs.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Feminino , Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/genética
11.
Biochimie ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432290

RESUMO

SARS-CoV-2 mainly infects the respiratory tract but can also target other organs, including the central nervous system. While it was recently shown that cells of the blood-brain-barrier are permissive to SARS-CoV-2 infection in vitro, it remains debated whether neurons can be infected. In this study, we demonstrate that vesicular stomatitis virus particles pseudotyped with the spike protein of SARS-CoV-2 variants WT, Alpha, Delta and Omicron enter the neuronal model cell line SH-SY5Y. Cell biological analyses of the pseudo-virus treated cultures showed marked alterations in microtubules of SH-SY5Y cells. Because the changes in ß-tubulin occurred in most cells, but only few were infected, we further asked whether interaction of the cells with spike protein might be sufficient to cause molecular and structural changes. For this, SH-SY5Y cells were incubated with trimeric spike proteins for time intervals of up to 24 h. CellProfiler™-based image analyses revealed changes in the intensities of microtubule staining in spike protein-incubated cells. Furthermore, expression of the spike protein-processing protease cathepsin L was found to be up-regulated by wild type, Alpha and Delta spike protein pseudotypes and cathepsin L was found to be secreted from spike protein-treated cells. We conclude that the mere interaction of the SARS-CoV-2 with neuronal cells can affect cellular architecture and proteolytic capacities. The molecular mechanisms underlying SARS-CoV-2 spike protein induced cytoskeletal changes in neuronal cells remain elusive and require future studies.

12.
FEMS Yeast Res ; 13(7): 706-10, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24020807

RESUMO

The Saccharomyces cerevisiae strain CBS6412 has been shown to be able to grow in synthetic medium containing glycerol as the sole carbon source, conditions under which laboratory strains such as CEN.PK and S288c cannot grow. Nonetheless, this strain exhibits a lag phase of c. 30-40 h following transition to glycerol medium. As mitochondria play a critical role in the dissimilation of the respiratory carbon source glycerol, we investigated mitochondrial function and dynamics throughout the lag phase using mitochondria-targeted roGFP, a redox-sensitive GFP variant. We found that following transition to glycerol medium, mitochondria become more oxidizing, accumulate near the bud neck, and exhibit decreased inheritance into daughter cells. Directly preceding entry into exponential growth phase, mitochondria become more reducing, mitochondrial accumulations at the bud neck decrease, and inheritance of mitochondria into daughter cells is restored.


Assuntos
Divisão Celular , Glicerol/metabolismo , Mitocôndrias/fisiologia , Saccharomyces cerevisiae/fisiologia , Carbono/metabolismo , Meios de Cultura/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento
13.
J Mol Endocrinol ; 70(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36129170

RESUMO

Proteolytic cleavage of thyroglobulin (Tg) for thyroid hormone (TH) liberation is followed by TH release from thyroid follicles into the circulation, enabled by TH transporters. The existence of a functional link between Tg-processing cathepsin proteases and TH transporters has been shown to be independent of the hypothalamus-pituitary-thyroid axis. Thus, lack of cathepsin K, combined with genetic defects in the TH transporters Mct8 and Mct10, that is the Ctsk-/-/Mct8-/y/Mct10-/- genotype, results in persistent Tg proteolysis due to autophagy induction. Because amino acid transport by L-type amino acid transporter 2 (Lat2) has been described to regulate autophagy, we asked whether Lat2 availability is affected in Ctsk-/-/Mct8-/y/Mct10-/- thyroid glands. Our data revealed that while mRNA amounts and subcellular localization of Lat2 remained unaltered in thyroid tissue of Ctsk-/-/Mct8-/y/Mct10-/- mice in comparison to WT controls, the Lat2 protein amounts were significantly reduced. These data suggest a direct link between Lat2 function and autophagy induction in Ctsk-/-/Mct8-/y/Mct10-/- mice. Indeed, thyroid tissue of Lat2-/- mice showed enhanced endo-lysosomal cathepsin activities, increased autophagosome formation, and enhanced autophagic flux. Collectively, these results suggest a mechanistic link between insufficient Lat2 protein function and autophagy induction in the thyroid gland of male mice.


Assuntos
Sistemas de Transporte de Aminoácidos , Autofagia , Glândula Tireoide , Animais , Masculino , Camundongos , Autofagia/genética , Catepsinas , Genótipo
14.
Biol Chem ; 393(9): 959-70, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22944695

RESUMO

Cathepsin K is important for the brain, because its deficiency in mice is associated with a marked decrease in differentiated astrocytes and changes in neuronal patterning in the hippocampus as well as with learning and memory deficits. As cathepsin K activity is most prominent in hippocampal regions of wild type animals, we hypothesised alterations in astrocyte-mediated support of neurons as a potential mechanism underlying the impaired brain functions in cathepsin K-deficient mice. To address this hypothesis, we have generated and characterised astroglia-rich primary cell cultures from cathepsin K-deficient and wild type mice and compared these cultures for possible changes in metabolic support functions and cell composition. Interestingly, cells expressing the oligodendrocytic markers myelin-associated glycoprotein and myelin basic protein were more frequent in astroglia-rich cultures from cathepsin K-deficient mice. However, cell cultures from both genotypes were morphologically comparable and similar with respect to glucose metabolism. In addition, specific glutathione content, glutathione export and γ-glutamyl-transpeptidase activity remained unchanged, whereas the specific activities of glutathione reductase and glutathione-S-transferase were increased by around 50% in cathepsin K-deficient cultures. Thus, lack of cathepsin K in astroglia-rich cultures appears not to affect metabolic supply functions of astrocytes but to facilitate the maturation of oligodendrocytes.


Assuntos
Astrócitos/citologia , Astrócitos/enzimologia , Catepsina K/deficiência , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Encéfalo/citologia , Encéfalo/enzimologia , Encéfalo/metabolismo , Catepsina K/metabolismo , Técnicas de Cultura de Células , Feminino , Glucose/metabolismo , Glutationa/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/enzimologia , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/enzimologia , Oligodendroglia/metabolismo
15.
BMC Neurosci ; 12: 74, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21794126

RESUMO

BACKGROUND: Cathepsin K is a cysteine peptidase known for its importance in osteoclast-mediated bone resorption. Inhibitors of cathepsin K are in clinical trials for treatment of osteoporosis. However, side effects of first generation inhibitors included altered levels of related cathepsins in peripheral organs and in the central nervous system (CNS). Cathepsin K has been recently detected in brain parenchyma and it has been linked to neurobehavioral disorders such as schizophrenia. Thus, the study of the functions that cathepsin K fulfils in the brain becomes highly relevant. RESULTS: Cathepsin K messenger RNA was detectable in all brain regions of wild type (WT) mice. At the protein level, cathepsin K was detected by immunofluorescence microscopy in vesicles of neuronal and non-neuronal cells throughout the mouse brain. The hippocampus of WT mice exhibited the highest levels of cathepsin K activity in fluorogenic assays, while the cortex, striatum, and cerebellum revealed significantly lower enzymatic activities. At the molecular level, the proteolytic network of cysteine cathepsins was disrupted in the brain of cathepsin K-deficient (Ctsk⁻/⁻) animals. Specifically, cathepsin B and L protein and activity levels were altered, whereas cathepsin D remained largely unaffected. Cystatin C, an endogenous inhibitor of cysteine cathepsins, was elevated in the striatum and hippocampus, pointing to regional differences in the tissue response to Ctsk ablation. Decreased levels of astrocytic glial fibrillary acidic protein, fewer and less ramified profiles of astrocyte processes, differentially altered levels of oligodendrocytic cyclic nucleotide phosphodiesterase, as well as alterations in the patterning of neuronal cell layers were observed in the hippocampus of Ctsk⁻/⁻ mice. A number of molecular and cellular changes were detected in other brain regions, including the cortex, striatum/mesencephalon, and cerebellum. Moreover, an overall induction of the dopaminergic system was found in Ctsk⁻/⁻ animals which exhibited reduced anxiety levels as well as short- and long-term memory impairments in behavioral assessments. CONCLUSION: We conclude that deletion of the Ctsk gene can lead to deregulation of related proteases, resulting in a wide range of molecular and cellular changes in the CNS with severe consequences for tissue homeostasis. We propose that cathepsin K activity has an important impact on the development and maintenance of the CNS in mice.


Assuntos
Encéfalo/metabolismo , Catepsina K/metabolismo , Deficiências da Aprendizagem/metabolismo , Transtornos da Memória/metabolismo , Animais , Encéfalo/patologia , Ativação Enzimática , Deficiências da Aprendizagem/patologia , Masculino , Transtornos da Memória/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Tecidual
16.
Cells ; 10(6)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208608

RESUMO

Trace amine-associated receptor 1 (rodent Taar1/human TAAR1) is a G protein-coupled receptor that is mainly recognized for its functions in neuromodulation. Previous in vitro studies suggested that Taar1 may signal from intracellular compartments. However, we have shown Taar1 to localize apically and on ciliary extensions in rodent thyrocytes, suggesting that at least in the thyroid, Taar1 may signal from the cilia at the apical plasma membrane domain of thyrocytes in situ, where it is exposed to the content of the follicle lumen containing putative Taar1 ligands. This study was designed to explore mouse Taar1 (mTaar1) trafficking, heterologously expressed in human and rat thyroid cell lines in order to establish an in vitro system in which Taar1 signaling from the cell surface can be studied in future. The results showed that chimeric mTaar1-EGFP traffics to the apical cell surface and localizes particularly to spherical structures of polarized thyroid cells, procilia, and primary cilia upon serum-starvation. Moreover, mTaar1-EGFP appears to form high molecular mass forms, possibly homodimers and tetramers, in stably expressing human thyroid cell lines. However, only monomeric mTaar1-EGFP was cell surface biotinylated in polarized human thyrocytes. In polarized rat thyrocytes, mTaar1-EGFP is retained in the endoplasmic reticulum, while cilia were reached by mTaar1-EGFP transiently co-expressed in combination with an HA-tagged construct of the related mTaar5. We conclude that Taar1 trafficking to cilia depends on their integrity. The results further suggest that an in vitro cell model was established that recapitulates Taar1 trafficking in thyrocytes in situ, in principle, and will enable studying Taar1 signaling in future, thus extending our general understanding of its potential significance for thyroid autoregulation.


Assuntos
Cílios/metabolismo , Transporte Proteico/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Células Epiteliais da Tireoide/metabolismo , Animais , Humanos , Camundongos , Ratos
17.
Biomedicines ; 9(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572949

RESUMO

Increased plasma and adipose tissue protease activity is observed in patients with type 2 diabetes and obesity. It has been proposed that specific proteases contribute to the link between obesity, adipose tissue inflammation and metabolic diseases. We have recently shown that ablation of the serine protease kallikrein-related peptidase 7 (Klk7) specifically in adipose tissue preserves systemic insulin sensitivity and protects mice from obesity-related AT inflammation. Here, we investigated whether whole body Klk7 knockout (Klk7-/-) mice develop a phenotype distinct from that caused by reduced Klk7 expression in adipose tissue. Compared to littermate controls, Klk7-/- mice gain less body weight and fat mass both under chow and high fat diet (HFD) feeding, are hyper-responsive to exogenous insulin and exhibit preserved adipose tissue function due to adipocyte hyperplasia and lower inflammation. Klk7-/- mice exhibit increased adipose tissue thermogenesis, which is not related to altered thyroid function. These data strengthen our recently proposed role of Klk7 in the regulation of body weight, energy metabolism, and obesity-associated adipose tissue dysfunction. The protective effects of Klk7 deficiency in obesity are likely linked to a significant limitation of adipocyte hypertrophy. In conclusion, our data indicate potential application of specific KLK7 inhibitors to regulate KLK7 activity in the development of obesity and counteract obesity-associated inflammation and metabolic diseases.

18.
Exp Clin Endocrinol Diabetes ; 128(6-07): 437-445, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32074633

RESUMO

This mini-review asks how self-regulation of the thyroid gland is realized at the cellular and molecular levels by canonical and non-canonical means. Canonical pathways of thyroid regulation comprise thyroid stimulating hormone-triggered receptor signaling. As part of non-canonical regulation, we hypothesized an interplay between protease-mediated thyroglobulin processing and thyroid hormone release into the circulation by means of thyroid hormone transporters like Mct8. We proposed a sensing mechanism by different thyroid hormone transporters, present in specific subcellular locations of thyroid epithelial cells, selectively monitoring individual steps of thyroglobulin processing, and thus, the cellular thyroid hormone status. Indeed, we found that proteases and thyroid hormone transporters are functionally inter-connected, however, in a counter-intuitive manner fostering self-thyrotoxicity in particular in Mct8- and/or Mct10-deficient mice. Furthermore, the possible role of the G protein-coupled receptor Taar1 is discussed, because we detected Taar1 at cilia of the apical plasma membrane of thyrocytes in vitro and in situ. Eventually, through pheno-typing Taar1-deficient mice, we identified a co-regulatory role of Taar1 and the thyroid stimulating hormone receptors. Recently, we showed that inhibition of thyroglobulin-processing enzymes results in disappearance of cilia from the apical pole of thyrocytes, while Taar1 is re-located to the endoplasmic reticulum. This pathway features a connection between thyrotropin-stimulated secretion of proteases into the thyroid follicle lumen and substrate-mediated self-assisted control of initially peri-cellular thyroglobulin processing, before its reinternalization by endocytosis, followed by extensive endo-lysosomal liberation of thyroid hormones, which are then released from thyroid follicles by means of thyroid hormone transporters.


Assuntos
Homeostase/fisiologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transdução de Sinais/fisiologia , Tireoglobulina/metabolismo , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Humanos , Receptores Acoplados a Proteínas G
19.
Biotechnol Lett ; 30(5): 813-8, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18175069

RESUMO

In addition to the numerous cathelicidin peptides that are associated with the antimicrobial activity exhibited by a crude extract from ovine blood, a further three peptides with antimicrobial activity have been identified. These were part of the precursor cathelin domain of cathelicidins, a large fragment of platelet factor 4 and a small peptide similar to signal peptide of the T-cell glycoprotein CD4 precursor. Fragments of proteins that are involved in protecting the host from infection may have a secondary purpose as antimicrobial agents once they have carried out their primary purpose and are cleaved the main protein.


Assuntos
Catelicidinas/sangue , Catelicidinas/isolamento & purificação , Precursores de Proteínas , Sequência de Aminoácidos , Animais , Antígenos CD4/química , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Espectrometria de Massas , Dados de Sequência Molecular , Neutrófilos/química , Fator Plaquetário 4/química , Ovinos
20.
Eur J Cell Biol ; 86(11-12): 747-61, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17651862

RESUMO

Migration, proliferation and differentiation of keratinocytes are important processes during tissue regeneration and wound healing of the skin. Here, we focussed on proteases that contribute to extracellular matrix (ECM) remodeling as a prerequisite of keratinocyte migration. In particular, we assessed the significance of the mammalian cysteine peptidase cathepsin B for human keratinocytes during regeneration from scratch wounding. We describe the construction of a scratch apparatus that allows applying scratches of defined length, width and depth to cultured cells in a reproducible fashion. The rationale for our approach derived from our previous work where we have shown that HaCaT keratinocytes secrete cathepsin B into the extracellular space during spontaneous and induced migration. Here, we observed rapid removal of type IV collagen from underneath lamellipodial extensions of keratinocytes at the advancing fronts of regenerating monolayers, indicating that proteolytic ECM remodeling starts upon initiation of keratinocyte migration. Furthermore, we verified our previous results with HaCaT cells by using normal human epidermal keratinocytes (NHEK) and show that non-cell-permeant cathepsin B-specific inhibitors delayed full regeneration of the monolayers from scratch wounding in both cell systems, HaCaT and NHEK. Application of a single dose of cathepsin B inhibitor directly after scratch wounding of keratinocytes demonstrated that cathepsin B is essential during initial stages of wound healing, while its contribution to the subsequent processes of proliferation and differentiation of keratinocytes was of less significance. This notion was supported by our observation that the cathepsin B inhibitors used in this study did not affect proliferation rates of keratinocytes of regenerating cultures. Thus, we conclude that cathepsin B is indeed involved in ECM remodeling after its secretion from migrating keratinocytes. Cathepsin B might directly cleave ECM constituents or it may initiate proteolytic cascades that involve other proteases with the ability to degrade ECM components. Because cathepsin B is important for enabling migration of both, HaCaT cells and NHEK, our results support the notion that HaCaT keratinocytes represent an excellent cell culture model for analysis of human epidermal skin keratinocyte migration.


Assuntos
Catepsina B/metabolismo , Epiderme/patologia , Epiderme/fisiologia , Queratinócitos/enzimologia , Queratinócitos/patologia , Regeneração , Catepsina B/antagonistas & inibidores , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Epiderme/efeitos dos fármacos , Epiderme/enzimologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/enzimologia , Humanos , Queratinócitos/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA