Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2025-2029, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891685

RESUMO

Electroencephalogram (EEG) is a widely used technique to diagnose psychological disorders. Until now, most of the studies focused on the diagnosis of a particular psychological disorder using EEG. We propose a generic approach to diagnose the different type of psychological disorders with high accuracy. The proposed approach is tested on five different datasets and three psychological disorders. Electrodes having higher signal to noise ratio are selected from the raw EEG signals. Multiple linear and non-linear features are then extracted from the selected electrodes. After feature selection, machine learning is used to diagnose the psychological disorders. We kept the same generic approach for all the datasets and diseases and achieved 93%, 85% and 80% F1 score on Schizophrenia, Epilepsy and Parkinson disease, respectively.


Assuntos
Epilepsia , Processamento de Sinais Assistido por Computador , Algoritmos , Eletroencefalografia , Epilepsia/diagnóstico , Humanos , Máquina de Vetores de Suporte
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 5842-5846, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33019302

RESUMO

DNA-Sequencing of tumor cells has revealed thousands of genetic mutations. However, cancer is caused by only some of them. Identifying mutations that contribute to tumor growth from neutral ones is extremely challenging and is currently carried out manually. This manual annotation is very cumbersome and expensive in terms of time and money. In this study, we introduce a novel method "NLP-SNPPred" to read scientific literature and learn the implicit features that cause certain variations to be pathogenic. Precisely, our method ingests the bio-medical literature and produces its vector representation via exploiting state of the art NLP methods like sent2vec, word2vec and tf-idf. These representations are then fed to machine learning predictors to identify the pathogenic versus neutral variations. Our best model (NLPSNPPred) trained on OncoKB and evaluated on several publicly available benchmark datasets, outperformed state of the art function prediction methods. Our results show that NLP can be used effectively in predicting functional impact of protein coding variations with minimal complementary biological features. Moreover, encoding biological knowledge into the right representations, combined with machine learning methods can help in automating manual efforts. A free to use web-server is available at http://www.nlp-snppred.cbrlab.org.


Assuntos
Processamento de Linguagem Natural , Proteínas , Aprendizado de Máquina , Mutação , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA