Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 97(3): 1407-1419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250773

RESUMO

BACKGROUND: Age is known to be the biggest risk factor for Alzheimer's disease (AD), and Mexican Americans (MAs), who are one of the fastest-aging populations in the United States, are at a uniquely elevated risk. Mitochondrial stress and dysfunction are key players in the progression of AD and are also known to be impacted by lifestyle and environmental exposures/stressors. OBJECTIVE: This study aimed to identify population-specific differences in indicators of mitochondrial stress and dysfunction associated with AD risk that are detectable in the blood. METHODS: Examining blood from both non-Hispanic white (NHW) and MA participants (N = 527, MA n = 284, NHW n = 243), mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) copy numbers were assessed through quantitative PCR. Data was stratified by population and sample type, and multiple linear regression analyses were performed to identify factors that may influence this phenotype of mitochondrial dysfunction. RESULTS: In the MA cohort, there was a significant relationship between cellular mtDNA:nDNA ratio and body mass index, CDR sum of boxes score, the APOEɛ2/ɛ3 genotype, and education. Further, there was a significant relationship between cell-free mtDNA copy number and both education and CDR sum score. In the NHW cohort, there was a significant relationship between cellular mtDNA:nDNA ratio and both age and CDR sum score. Age was associated with cell-free mtDNA in the NHW cohort. CONCLUSIONS: This evidence supports the existence of population-based differences in the factors that are predictive of this blood-based phenotype of mitochondrial dysfunction, which may be indicative of cognitive decline and AD risk.


Assuntos
Doença de Alzheimer , Doenças Mitocondriais , Humanos , DNA Mitocondrial/genética , Doença de Alzheimer/genética , Mitocôndrias/genética , Envelhecimento
2.
Pharmaceutics ; 15(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36839766

RESUMO

Lung metastasis is a leading cause of cancer-related deaths. Here, we show that intranasal delivery of our engineered CpG-coated tumor antigen (Tag)-encapsulated nanoparticles (NPs)-nasal nano-vaccine-significantly reduced lung colonization by intravenous challenge of an extra-pulmonary tumor. Protection against tumor-cell lung colonization was linked to the induction of localized mucosal-associated effector and resident memory T cells as well as increased bronchiolar alveolar lavage-fluid IgA and serum IgG antibody responses. The nasal nano-vaccine-induced T-cell-mediated antitumor mucosal immune response was shown to increase tumor-specific production of IFN-γ and granzyme B by lung-derived CD8+ T cells. These findings demonstrate that our engineered nasal nano-vaccine has the potential to be used as a prophylactic approach prior to the seeding of tumors in the lungs, and thereby prevent overt lung metastases from existing extra pulmonary tumors.

3.
Sci Rep ; 13(1): 14765, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679478

RESUMO

Alzheimer's Disease (AD) continues to be a leading cause of death in the US. As the US aging population (ages 65 +) expands, the impact will disproportionately affect vulnerable populations, e.g., Hispanic/Latino population, due to their AD-related health disparities. Age-related regression in mitochondrial activity and ethnic-specific differences in metabolic burden could potentially explain in part the racial/ethnic distinctions in etiology that exist for AD. Oxidation of guanine (G) to 8-oxo-guanine (8oxoG) is a prevalent lesion and an indicator of oxidative stress and mitochondrial dysfunction. Damaged mtDNA (8oxoG) can serve as an important marker of age-related systemic metabolic dysfunction and upon release into peripheral circulation may exacerbate pathophysiology contributing to AD development and/or progression. Analyzing blood samples from Mexican American (MA) and non-Hispanic White (NHW) participants enrolled in the Texas Alzheimer's Research & Care Consortium, we used blood-based measurements of 8oxoG from both buffy coat PBMCs and plasma to determine associations with population, sex, type-2 diabetes, and AD risk. Our results show that 8oxoG levels in both buffy coat and plasma were significantly associated with population, sex, years of education, and reveal a potential association with AD. Furthermore, MAs are significantly burdened by mtDNA oxidative damage in both blood fractions, which may contribute to their metabolic vulnerability to developing AD.


Assuntos
Doença de Alzheimer , Dano ao DNA , DNA Mitocondrial , Mitocôndrias , Estresse Oxidativo , Idoso , Humanos , Doença de Alzheimer/genética , DNA Mitocondrial/genética , Guanina , Americanos Mexicanos/genética , Mitocôndrias/genética , Estresse Oxidativo/genética , Dano ao DNA/genética , Brancos/genética
4.
Res Sq ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993752

RESUMO

Alzheimer's Disease (AD) continues to be a leading cause of death in the US. As the US aging population (ages 65+) expands, the impact will disproportionately affect vulnerable populations, e.g., Hispanic/Latinx population, due to their AD-related health disparities. Age-related regression in mitochondrial activity and ethnic-specific differences in metabolic burden could potentially explain in part the racial/ethnic distinctions in etiology that exist for AD. Oxidation of guanine (G) to 8-oxo-guanine (8oxoG) is a prevalent lesion and an indicator of oxidative stress and mitochondrial dysfunction. Damaged mtDNA (8oxoG) can serve as an important marker of age-related systemic metabolic dysfunction and upon release into peripheral circulation may exacerbate pathophysiology contributing to AD development and/or progression. Analyzing blood samples from Mexican American (MA) and non-Hispanic White (NHW) participants enrolled in the Texas Alzheimer's Research & Care Consortium, we used blood-based measurements of 8oxoG from both buffy coat PBMCs and plasma to determine associations with population, sex, type-2 diabetes, and AD risk. Our results show that 8oxoG levels in both buffy coat and plasma were significantly associated with population, sex, years of education, and reveal a potential association with AD. Furthermore, MAs are significantly burdened by mtDNA oxidative damage in both blood fractions, which may contribute to their metabolic vulnerability to developing AD.

5.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38256885

RESUMO

A hallmark of effective cancer treatment is the prevention of tumor reoccurrence and metastasis to distal organs, which are responsible for most cancer deaths. However, primary tumor resection is expected to be curative as most solid tumors have been shown both experimentally and clinically to accelerate metastasis to distal organs including the lungs. In this study, we evaluated the efficacy of our engineered nasal nano-vaccine (CpG-NP-Tag) in reducing accelerated lung metastasis resulting from primary tumor resection. Cytosine-phosphate-guanine oligonucleotide [CpG ODN]-conjugated nanoparticle [NP] encapsulating tumor antigen [Tag] (CpG-NP-Tag) was manufactured and tested in vivo using a syngeneic mouse mammary tumor model following intranasal delivery. We found that our nasal nano-vaccine (CpG-NP-Tag), compared to control NPs administered after primary mammary tumor resection, significantly reduced lung metastasis in female BALB/c mice subjected to surgery (surgery mice). An evaluation of vaccine efficacy in both surgery and non-surgery mice revealed that primary tumor resection reduces CD11b+ monocyte-derived suppressor-like cell accumulation in the lungs, allowing increased infiltration of vaccine-elicited T cells (IFN-γ CD8+ T cells) in the lungs of surgery mice compared to non-surgery mice. These findings suggest that the combination of the target delivery of a nasal vaccine in conjunction with the standard surgery of primary tumors is a plausible adjunctive treatment against the establishment of lung metastasis.

6.
Alzheimers Dement (Amst) ; 15(4): e12518, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155914

RESUMO

INTRODUCTION: Here we evaluate frequencies of the top 10 Alzheimer's disease (AD) risk alleles for late-onset AD in Mexican American (MA) and non-Hispanic White (NHW) American participants enrolled in the Health and Aging Brain Study-Health Disparities Study cohort. METHODS: Using DNA extracted from this community-based diverse population, we calculated the genotype frequencies in each population to determine whether a significant difference is detected between the different ethnicities. DNA genotyping was performed per manufacturers' protocols. RESULTS: Allele and genotype frequencies for 9 of the 11 single nucleotide polymorphisms (two apolipoprotein E variants, CR1, BIN1, DRB1, NYAP1, PTK2B, FERMT2, and ABCA7) differed significantly between MAs and NHWs. DISCUSSION: The significant differences in frequencies of top AD risk alleles observed here across MAs and NHWs suggest that ethnicity-specific genetic risks for AD exist. Given our results, we are advancing additional projects to further elucidate ethnicity-specific differences in AD.

7.
NPJ Aging ; 8(1): 2, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927256

RESUMO

Mexican Americans (MAs) are the fastest-growing Hispanic population segment in the US; as this population increases in age, so will the societal burden of age-related diseases such as Alzheimer's disease (AD). Mitochondrial DNA (mtDNA) damage may be implicated in MA AD risk since metabolic comorbidities are more prevalent in this group. Oxidative damage to guanosine (8oxoG) is one of the most prevalent DNA lesions and a putative indicator of mitochondrial dysfunction. Testing blood samples from participants of the Texas Alzheimer's Research and Care Consortium, we found mtDNA 8oxoG mutational load to be significantly higher in MAs compared to non-Hispanic whites and that MA females are differentially affected. Furthermore, we identified specific mtDNA haplotypes that confer increased risk for oxidative damage and suggestive evidence that cognitive function may be related to 8oxoG burden. Our understanding of these phenomena will elucidate population- and sex-specific mechanisms of AD pathogenesis, informing the development of more precise interventions and therapeutic approaches for MAs with AD in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA