Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34389679

RESUMO

Lipid-coated noble metal nanoparticles (L-NPs) combine the biomimetic surface properties of a self-assembled lipid membrane with the plasmonic properties of a nanoparticle (NP) core. In this work, we investigate derivatives of cholesterol, which can be found in high concentrations in biological membranes, and other terpenoids, as tunable, synthetic platforms to functionalize L-NPs. Side chains of different length and polarity, with a terminal alkyne group as Raman label, are introduced into cholesterol and betulin frameworks. The synthesized tags are shown to coexist in two conformations in the lipid layer of the L-NPs, identified as "head-out" and "head-in" orientations, whose relative ratio is determined by their interactions with the lipid-water hydrogen-bonding network. The orientational dimorphism of the tags introduces orthogonal functionalities into the NP surface for selective targeting and plasmon-enhanced Raman sensing, which is utilized for the identification and Raman imaging of epidermal growth factor receptor-overexpressing cancer cells.


Assuntos
Lipídeos/química , Lipossomos/química , Nanopartículas Metálicas/química , Nanopartículas/química , Química Click , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular
2.
Nano Lett ; 23(10): 4642-4647, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37159328

RESUMO

The ability to discern noble metal nanoparticles (NPs) with different sizes and in ambient media with different refractive indices has important applications in imaging and sensing. Here a two-color (405 nm, 445 nm) interferometric scattering (iSCAT) detection scheme is applied to characterize the wavelength-dependent iSCAT contrast of Ag NPs with nominal diameters of 10, 20, 40, and 60 nm and to distinguish between NPs of different sizes. The iSCAT contrast also depends on the ambient refractive index and the relative iSCAT contrast on both channels revealed a spectral red-shift for 40 and 60 nm Ag NPs when the ambient refractive index was increased from n = 1.3892 to n = 1.4328. With the selected wavelength channels, the spectral resolution of the two-color imaging strategy was, however, insufficient to resolve spectral shifts induced by refractive index changes for 10 and 20 nm Ag NPs.

3.
Bioconjug Chem ; 33(9): 1716-1728, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35993676

RESUMO

The epidermal growth factor (EGF) receptor (EGFR) is heterogeneously distributed on the cellular surface and enriched in clusters with diameters of tens of nanometers. Multivalent presentation of EGF ligand on nanoparticles (NPs) provides an approach for controlling and amplifying the local activation of EGFR in these clusters. Reactive oxygen species (ROS) have been indicated to play a role in the regulation of EGFR activation as second messengers, but the effect of nanoconjugation on EGF-mediated ROS formation and ROS-induced EGFR activation is not well established. The goal of this manuscript is to characterize the multivalent enhancement of EGF-induced ROS formation and to test its effect on EGFR phosphorylation in breast cancer cell models using gold (Au) NPs with a diameter of 81 ± 1 nm functionalized with two different EGF ligand densities (12 ± 7 EGF/NP (NP-EGF12) and 87 ± 6 EGF/NP (NP-EGF87)). In the EGFR overexpressing cell lines MDA-MB-231 and MDA-MB-468, NP-EGF87 achieved a measurable multivalent enhancement of ROS that peaked at concentrations c ROSmax ≤ 25 pM and that were EGFR and nicotinamide adenine dinucleotide phosphate oxidase (NOX) dependent. NP-EGF12 failed to generate comparable ROS levels as NP-EGF87 in the investigated NP input concentration range (0-100 pM). In cells with nearly identical numbers of bound NP-EGF87 and NP-EGF12, the ROS levels for NP-EGF87 were systematically higher, indicating that the multivalent enhancement is exclusively related not only to avidity but also to a stronger stimulation per NP. Importantly, the increase in EGF-induced ROS formation associated with EGF nanoconjugation at c ROSmax resulted in a measurable gain in EGFR phosphorylation, confirming that ROS generation contributes to the multivalent enhancement of EGFR activation in response to NP-EGF87.


Assuntos
Fator de Crescimento Epidérmico , Nanopartículas , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Ouro , Ligantes , NADP/metabolismo , Oxirredutases/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Sistemas do Segundo Mensageiro
4.
Proc Natl Acad Sci U S A ; 116(12): 5705-5714, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30842281

RESUMO

The T cell Ig and mucin domain (TIM) proteins inhibit release of HIV-1 and other enveloped viruses by interacting with cell- and virion-associated phosphatidylserine (PS). Here, we show that the Nef proteins of HIV-1 and other lentiviruses antagonize TIM-mediated restriction. TIM-1 more potently inhibits the release of Nef-deficient relative to Nef-expressing HIV-1, and ectopic expression of Nef relieves restriction. HIV-1 Nef does not down-regulate the overall level of TIM-1 expression, but promotes its internalization from the plasma membrane and sequesters its expression in intracellular compartments. Notably, Nef mutants defective in modulating membrane protein endocytic trafficking are incapable of antagonizing TIM-mediated inhibition of HIV-1 release. Intriguingly, depletion of SERINC3 or SERINC5 proteins in human peripheral blood mononuclear cells (PBMCs) attenuates TIM-1 restriction of HIV-1 release, in particular that of Nef-deficient viruses. In contrast, coexpression of SERINC3 or SERINC5 increases the expression of TIM-1 on the plasma membrane and potentiates TIM-mediated inhibition of HIV-1 production. Pulse-chase metabolic labeling reveals that the half-life of TIM-1 is extended by SERINC5 from <2 to ∼6 hours, suggesting that SERINC5 stabilizes the expression of TIM-1. Consistent with a role for SERINC protein in potentiating TIM-1 restriction, we find that MLV glycoGag and EIAV S2 proteins, which, like Nef, antagonize SERINC-mediated diminishment of HIV-1 infectivity, also effectively counteract TIM-mediated inhibition of HIV-1 release. Collectively, our work reveals a role of Nef in antagonizing TIM-1 and highlights the complex interplay between Nef and HIV-1 restriction by TIMs and SERINCs.


Assuntos
Infecções por HIV/metabolismo , Receptor Celular 1 do Vírus da Hepatite A/fisiologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/fisiologia , Membrana Celular/metabolismo , Regulação para Baixo , Células HEK293 , Soropositividade para HIV , HIV-1/metabolismo , HIV-1/patogenicidade , Receptor Celular 1 do Vírus da Hepatite A/antagonistas & inibidores , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Leucócitos Mononucleares/metabolismo , Glicoproteínas de Membrana , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Transporte Proteico , Receptores de Superfície Celular/metabolismo , Vírion/metabolismo , Replicação Viral/efeitos dos fármacos , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(39): E9041-E9050, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30190430

RESUMO

Gold nanoparticles (NPs) wrapped in a membrane can be utilized as artificial virus nanoparticles (AVNs) that combine the large nonblinking or bleaching optical cross-section of the NP core with the biological surface properties and functionalities provided by a self-assembled lipid membrane. We used these hybrid nanomaterials to test the roles of monosialodihexosylganglioside (GM3) and phosphatidylserine (PS) for a lipid-mediated targeting of virus-containing compartments (VCCs) in macrophages. GM3-presenting AVNs bind to CD169 (Siglec-1)-expressing macrophages, but inclusion of PS in the GM3-containing AVN membrane decreases binding. Molecular dynamics simulations of the AVN membrane and experimental binding studies of CD169 to GM3-presenting AVNs reveal Na+-mediated interactions between GM3 and PS as a potential cause of the antagonistic action on binding by the two negatively charged lipids. GM3-functionalized AVNs with no or low PS content localize to tetherin+, CD9+ VCC in a membrane composition-depending fashion, but increasing amounts of PS in the AVN membrane redirect the NP to lysosomal compartments. Interestingly, this compartmentalization is highly GM3 specific. Even AVNs presenting the related monosialotetrahexosylganglioside (GM1) fail to achieve an accumulation in VCC. AVN localization to VCC was observed for AVN with gold NP core but not for liposomes, suggesting that NP sequestration into VCC has additional requirements beyond ligand (GM3)-receptor (CD169) recognition that are related to the physical properties of the NP core. Our results confirm AVN as a scalable platform for elucidating the mechanisms of lipid-mediated viral entry pathways and for selective intracellular targeting.


Assuntos
Gangliosídeo G(M3)/metabolismo , Ouro , Macrófagos/metabolismo , Membranas Artificiais , Nanopartículas Metálicas , Fosfatidilserinas/metabolismo , Internalização do Vírus , Vírus/metabolismo , Humanos , Lisossomos/metabolismo , Lisossomos/virologia , Macrófagos/virologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Células THP-1 , Tetraspanina 29/metabolismo
6.
Nano Lett ; 20(10): 7536-7542, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32986433

RESUMO

Despite the extensive use of biodegradable polyester nanoparticles for drug delivery, and reports of the strong influence of nanoparticle mechanics on nano-bio interactions, there is a lack of systematic studies on the mechanics of these nanoparticles under physiologically relevant conditions. Here, we report indentation experiments on poly(lactic acid) and poly(lactide-co-glycolide) nanoparticles using atomic force microscopy. While dried nanoparticles were found to be rigid at room temperature, their elastic modulus was found to decrease by as much as 30 fold under simulated physiological conditions (i.e., in water at 37 °C). Differential scanning calorimetry confirms that this softening can be attributed to the glass transition of the nanoparticles. Using a combination of mechanical and thermoanalytical characterization, the plasticizing effects of miniaturization, molecular weight, and immersion in water were investigated. Collectively, these experiments provide insight for experimentalists exploring the relationship between polymer nanoparticle mechanics and in vivo behavior.


Assuntos
Nanopartículas , Ácido Poliglicólico , Ácido Láctico , Tamanho da Partícula , Poliésteres , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
7.
Int J Mod Phys B ; 31(24)2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-29391660

RESUMO

Self-assembly of functionalized nanoparticles (NPs) provides a unique class of nanomaterials for exploring and utilizing quantum-plasmonic effects that occur if the interparticle separation between NPs approaches a few nanometers and below. We review recent theoretical and experimental studies of plasmon coupling in self-assembled NP structures that contain molecular linkers between the NPs. Charge transfer through the interparticle gap of an NP dimer results in a significant blue-shift of the bonding dipolar plasmon (BDP) mode relative to classical electromagnetic predictions, and gives rise to new coupled plasmon modes, the so-called charge transfer plasmon (CTP) modes. The blue-shift of the plasmon spectrum is accompanied by a weakening of the electromagnetic field in the gap of the NPs. Due to an optical far-field signature that is sensitive to charge transfer across the gap, plasmonic molecules represent a sensor platform for detecting and characterizing gap conductivity in an optical fashion and for characterizing the role of molecules in facilitating the charge transfer across the gap.

8.
Opt Express ; 24(8): 8471-9, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27137285

RESUMO

The transverse spin angular momentum of light has recently received tremendous attention as it adds a new degree of freedom for controlling light-matter interactions. In this work we demonstrate the generation of transverse spin angular momentum by the weakly-guided mode of semiconductor nanowires. The evanescent field of these modes in combination with the transversality condition rigorously accounts for the occurrence of transverse spin angular momentum. The intriguing and nontrivial spin properties of optical modes in semiconductor nanowires are of high interest for a broad range of new applications including chiral optical trapping, quantum information processing, and nanophotonic circuitry.

9.
Nano Lett ; 15(8): 5349-57, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26121062

RESUMO

The distance-dependent plasmon coupling between biopolymer tethered gold or silver nanoparticles forms the foundation for the so-called plasmon rulers. While conventional plasmon ruler applications focus on the detection of singular events in the far-field spectrum, we perform in this Letter a ratiometric analysis of the continuous spectral fluctuations arising from thermal interparticle separation variations in plasmon rulers confined to fluid lipid membranes. We characterized plasmon rulers with different DNA tethers and demonstrate the ability to detect and quantify differences in the plasmon ruler potential and tether stiffness. The influence of the nature of the tether (single-stranded versus double-stranded DNA) and the length of the tether is analyzed. The characterization of the continuous variation of the interparticle separation in individual plasmon rulers through optical fluctuation analysis provides additional information about the conformational flexibility of the tether molecule(s) located in the confinement of the deeply subdiffraction limit interparticle gap and enhances the versatility of plasmon rulers as a tool in Biophysics and Nanotechnology.


Assuntos
DNA/química , Ouro/química , Nanopartículas/química , Prata/química , Dimerização , Elasticidade , Dureza , Ressonância de Plasmônio de Superfície
10.
Small ; 11(13): 1592-602, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25382201

RESUMO

Phosphatidylserine (PS) and monosialotetrahexosylganglioside (GM1 ) are examples of two host-derived lipids in the membrane of enveloped virus particles that are known to contribute to virus attachment, uptake, and ultimately dissemination. A quantitative characterization of their contribution to the functionality of the virus requires information about their relative concentrations in the viral membrane. Here, a gold nanoparticle (NP) binding assay for probing relative PS and GM1 lipid concentrations in the outer leaflet of different HIV-1 and Ebola virus-like particles (VLPs) using sample sizes of less than 3 × 10(6) particles is introduced. The assay evaluates both scattering intensity and resonance wavelength, and determines relative NP densities through plasmon coupling as a measure for the target lipid concentrations in the NP-labeled VLP membrane. A correlation of the optical observables with absolute lipid contents is achieved by calibration of the plasmon coupling-based methodology with unilamellar liposomes of known PS or GM1 concentration. The performed studies reveal significant differences in the membrane of VLPs that assemble at different intracellular sites and pave the way to an optical quantification of lipid concentration in virus particles at physiological titers.


Assuntos
Lipídeos/análise , Nanopartículas , Vírion/química , Calibragem , Lipossomos
11.
PLoS Pathog ; 9(4): e1003291, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593001

RESUMO

Human immunodeficiency virus type 1 (HIV-1) interactions with myeloid dendritic cells (DCs) can result in virus dissemination to CD4⁺ T cells via a trans infection pathway dependent on virion incorporation of the host cell derived glycosphingolipid (GSL), GM3. The mechanism of DC-mediated trans infection is extremely efficacious and can result in infection of multiple CD4⁺ T cells as these cells make exploratory contacts on the DC surface. While it has long been appreciated that activation of DCs with ligands that induce type I IFN signaling pathway dramatically enhances DC-mediated T cell trans infection, the mechanism by which this occurs has remained unclear until now. Here, we demonstrate that the type I IFN-inducible Siglec-1, CD169, is the DC receptor that captures HIV in a GM3-dependent manner. Selective downregulation of CD169 expression, neutralizing CD169 function, or depletion of GSLs from virions, abrogated DC-mediated HIV-1 capture and trans infection, while exogenous expression of CD169 in receptor-naïve cells rescued GSL-dependent capture and trans infection. HIV-1 particles co-localized with CD169 on DC surface immediately following capture and subsequently within non-lysosomal compartments that redistributed to the DC--T cell infectious synapses upon initiation of T cell contact. Together, these findings describe a novel mechanism of pathogen parasitization of host encoded cellular recognition machinery (GM3--CD169 interaction) for DC-dependent HIV dissemination.


Assuntos
Linfócitos T CD4-Positivos/virologia , Células Dendríticas/virologia , Gangliosídeo G(M3)/metabolismo , HIV-1/fisiologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Regulação para Baixo , Gangliosídeo G(M3)/genética , Células HEK293 , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Interferon-alfa/metabolismo , Camundongos , Interferência de RNA , Ratos , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Transdução de Sinais
12.
Opt Lett ; 40(4): 546-9, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25680146

RESUMO

A novel fiber optical refractive index sensor based on gold nanoshells immobilized on the surface of an etched single-mode fiber including a Bragg grating is demonstrated. The nanoparticle coating induces refractive index dependent waveguide losses, because of the variation of the evanescently guided part of the light. Hence the amplitude of the Bragg reflection is highly sensitive to refractive index changes of the surrounding medium. The nanoshell functionalized fiber optical refractive index sensor works in reflectance mode, is suitable for chemical and biochemical sensing, and shows an intensity dependency of 4400% per refractive index unit in the refractive index range between 1.333 and 1.346. Furthermore, the physical length of the sensor is smaller than 3 mm with a diameter of 6 µm, and therefore offers the possibility of a localized refractive index measurement.

13.
Proc Natl Acad Sci U S A ; 109(19): 7475-80, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22529395

RESUMO

The interaction between HIV and dendritic cells (DCs) is an important early event in HIV-1 pathogenesis that leads to efficient viral dissemination. Here we demonstrate a HIV gp120-independent DC capture mechanism that uses virion-incorporated host-derived gangliosides with terminal α2-3-linked sialic acid linkages. Using exogenously enriched virus and artificial liposome particles, we demonstrate that both α2-3 gangliosides GM1 and GM3 are capable of mediating this interaction when present in the particle at high levels. In the absence of overexpression, GM3 is the primary ligand responsible for this capture mechanism, because siRNA depletion of GM3 but not GM1 from the producer cell and hence virions, resulted in a dramatic decrease in DC capture. Furthermore, HIV-1 capture by DCs was competitively inhibited by targeting virion-associated GM3, but was unchanged by targeting GM1. Finally, virions were derived from monocytoid THP-1 cells that constitutively display low levels of GM1 and GM3, or from THP-1 cells induced to express high surface levels of GM1 and GM3 upon stimulation with the TLR2/1 ligand Pam3CSK4. Compared with untreated THP-1 cells, virus produced from Pam3CSK4-stimulated THP-1 cells incorporated higher levels of GM3, but not GM1, and showed enhanced DC capture and trans-infection. Our results identify a unique HIV-1 DC attachment mechanism that is dependent on a host-cell-derived ligand, GM3, and is a unique example of pathogen mimicry of host-cell recognition pathways that drive virus capture and dissemination in vivo.


Assuntos
Células Dendríticas/imunologia , Gangliosídeo G(M3)/imunologia , HIV-1/imunologia , Vírion/imunologia , Linhagem Celular , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Citometria de Fluxo , Gangliosídeo G(M1)/imunologia , Gangliosídeo G(M1)/metabolismo , Gangliosídeo G(M3)/metabolismo , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Gangliosídeo Galactosiltransferase , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicoesfingolipídeos/imunologia , Glicoesfingolipídeos/metabolismo , Células HEK293 , HIV-1/fisiologia , Células HeLa , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Lipopeptídeos/farmacologia , Lipossomos/imunologia , Lipossomos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/virologia , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Interferência de RNA , Vírion/metabolismo
14.
Chem Soc Rev ; 43(11): 3884-97, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24390574

RESUMO

Due to their advantageous material properties, noble metal nanoparticles are versatile tools in biosensing and imaging. A characteristic feature of gold and silver nanoparticles is their ability to sustain localized surface plasmons that provide both large optical cross-sections and extraordinary photophysical stability. Plasmon coupling microscopy takes advantage of the beneficial optical properties and utilizes electromagnetic near-field coupling between individual noble metal nanoparticle labels to resolve subdiffraction limit separations in an all-optical fashion. This Tutorial provides an introduction into the physical concepts underlying distance dependent plasmon coupling, discusses potential experimental implementation of plasmon coupling microscopy, and reviews applications in the area of biosensing and imaging.


Assuntos
Diagnóstico por Imagem/métodos , Nanopartículas Metálicas/química , Microscopia/instrumentação , Técnicas de Diagnóstico Molecular , Transporte Biológico , Técnicas Biossensoriais , Linhagem Celular Tumoral , Diagnóstico por Imagem/instrumentação , Ouro/química , Humanos , Prata/química , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
15.
Adv Funct Mater ; 24(6): 739-746, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30245611

RESUMO

Metallic and dielectric nanoparticles (NPs) have synergistic electromagnetic properties but their positioning into morphologically defined hybrid arrays with novel optical properties still poses significant challenges. A template-guided self-assembly strategy is introduced for the positioning of metallic and dielectric NPs at pre-defined lattice sites. The chemical assembly approach facilitates the fabrication of clusters of metallic NPs with interparticle separations of only a few nanometers in a landscape of dielectric NPs positioned hundreds of nanometers apart. This approach is used to generate two-dimensional interdigitated arrays of 250 nm diameter TiO2 NPs and clusters of electromagnetically strongly coupled 60 nm Au NPs. The morphologydependent near- and far-field responses of the resulting multiscale optoplasmonic arrays are analyzed in detail. Elastic and inelastic scattering spectroscopy in combination with electromagnetic simulations reveal that optoplasmonic arrays sustain delocalized photonic-plasmonic modes that achieve a cascaded E-field enhancement in the gap junctions of the Au NP clusters and simultaneously increase the E-field intensity throughout the entire array.

16.
Proc Natl Acad Sci U S A ; 108(8): 3147-51, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21300898

RESUMO

Energy transfer between photons and molecules and between neighboring molecules is ubiquitous in living nature, most prominently in photosynthesis. While energy transfer is efficiently utilized by living systems, its adoption to connect individual components in man-made plasmonic nanocircuits has been challenged by low transfer efficiencies that motivate the development of entirely new concepts for energy transfer. We introduce herein optoplasmonic superlenses that combine the capability of optical microcavities to insulate molecule-photon systems from decohering environmental effects with the superior light nanoconcentration properties of nanoantennas. The proposed structures provide significant enhancement of the emitter radiative rate and efficient long-range transfer of emitted photons followed by subsequent refocusing into nanoscale volumes accessible to near- and far-field detection. Optoplasmonic superlenses are versatile building blocks for optoplasmonic nanocircuits and can be used to construct "dark" single-molecule sensors, resonant amplifiers, nanoconcentrators, frequency multiplexers, demultiplexers, energy converters, and dynamical switches.


Assuntos
Transferência de Energia , Lentes , Nanotecnologia/métodos , Desenho de Equipamento , Fótons
17.
Nanoscale ; 16(17): 8533-8545, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38595322

RESUMO

Lipid coating is considered a versatile strategy to equip nanoparticles (NPs) with a biomimetic surface coating, but the membrane properties of these nanoassemblies remain in many cases insufficiently understood. In this work, we apply C-Laurdan generalized polarization (GP) measurements to probe the temperature-dependent polarity of hybrid membranes consisting of a lipid monolayer adsorbed onto a polylactic acid (PLA) polymer core as function of lipid composition and compare the behavior of the lipid coated NPs (LNPs) with that of liposomes assembled from identical lipid mixtures. The LNPs were generated by nanoprecipitation of the polymer in aqueous solutions containing two types of lipid mixtures: (i) cholesterol, dipalmitoylphosphatidylcholine (DPPC), and the ganglioside GM3, as well as (ii) dioleoylphosphatidylcholine (DOPC), DPPC and GM3. LNPs were found to exhibit more distinct and narrower phase transitions than corresponding liposomes and to retain detectable phase transitions even for cholesterol or DOPC concentrations that yielded no detectable transitions in liposomes. These findings together with higher GP values in the case of the LNPs for temperatures above the phase transition temperature indicate a stabilization of the membrane through the polymer core. LNP binding studies to GM3-recognizing cells indicate that differences in the membrane fluidity affect binding avidity in the investigated model system.


Assuntos
Lipossomos , Fluidez de Membrana , Nanopartículas , Poliésteres , Poliésteres/química , Nanopartículas/química , Lipossomos/química , Colesterol/química , Polímeros/química , 1,2-Dipalmitoilfosfatidilcolina/química , Ácido Láctico/química , Lipídeos/química , Temperatura , Gangliosídeo G(M3)/química
18.
Nanoscale ; 16(24): 11696-11704, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38860984

RESUMO

Plasmonic molecules are discrete assemblies of noble metal nanoparticles (NPs) that are of interest as transducers in optical nanosensors. So far, NPs with diameters of ∼40 nm have been the preferred building blocks for plasmonic molecules intended as optical single molecule sensors due to difficulties associated with detecting smaller NPs through elastic scattering in conventional darkfield microscopy. Here, we apply 405 nm, 445 nm two-color interferometric scattering (iSCAT) microscopy to characterize polyethylene glycol (PEG) tethered dimers of 10 nm and 20 nm Ag NPs and their monomers. Dimers of both NP sizes can be discerned from their respective monomers through changes in the average iSCAT contrast. In the case of 20 nm Ag NPs, dimer formation induces a change in the sign of the iSCAT contrast, providing a characteristic signal for detecting binding events. 20 nm Ag NP dimers with 0.4 kDa and 3.4 kDa polyethylene glycol (PEG) spacers show iSCAT contrast distributions with significantly different averages on both wavelength channels. The iSCAT contrast measured for individual PEG-tethered 10 nm or 20 nm NP dimers as a function of time shows contrast fluctuations indicative of a rich structural dynamics in the assembled plasmonic molecules, which provides an additional metric to discern dimers from monomers and paves the path to a new class of interferometric plasmon rulers.

19.
J Opt ; 26(1): 013001, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38116399

RESUMO

Optical sensors and sensing technologies are playing a more and more important role in our modern world. From micro-probes to large devices used in such diverse areas like medical diagnosis, defence, monitoring of industrial and environmental conditions, optics can be used in a variety of ways to achieve compact, low cost, stand-off sensing with extreme sensitivity and selectivity. Actually, the challenges to the design and functioning of an optical sensor for a particular application requires intimate knowledge of the optical, material, and environmental properties that can affect its performance. This roadmap on optical sensors addresses different technologies and application areas. It is constituted by twelve contributions authored by world-leading experts, providing insight into the current state-of-the-art and the challenges their respective fields face. Two articles address the area of optical fibre sensors, encompassing both conventional and specialty optical fibres. Several other articles are dedicated to laser-based sensors, micro- and nano-engineered sensors, whispering-gallery mode and plasmonic sensors. The use of optical sensors in chemical, biological and biomedical areas is discussed in some other papers. Different approaches required to satisfy applications at visible, infrared and THz spectral regions are also discussed.

20.
Anal Chem ; 85(3): 1290-4, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23320416

RESUMO

CD44 and CD24 are important cell surface glycoproteins whose relative expression levels are used to identify so-called cancer stem cells (CSCs). While current diagnostic applications of CD44 and CD24 focus primarily on their expression levels, we demonstrate here that noble metal nanoparticle (NP) immunolabeling in combination with plasmon coupling microscopy (PCM) can reveal more subtle differences, such as the spatial organization of these surface species on subdiffraction limit length scales. We quantified both expression and spatial clustering of CD44 and CD24 on MCF7 and SKBR3 breast cancer cells through analysis of the labeling intensity and the electromagnetic coupling of the NP labels, respectively. The labeling intensity was well correlated with the receptor expression, but the inspection of the labeled cell surface in the optical microscope revealed that the NP immunolabels were not homogeneously distributed. Consistent with a heterogeneous spatial distribution of the targeted CD24 and CD44 in the plasma membrane, a significant fraction of the NPs were organized into clusters, which were easily detectable in the optical microscope as discrete spots with colors ranging from green to orange. To further quantify the spatial organization of the targeted proteins, we characterized individual NP clusters through spatially resolved elastic scattering spectroscopy. The statistical analysis of the single cluster spectra revealed a higher clustering affinity for CD24 than for CD44 in the investigated cancer models. This preferential clustering was removed upon lipid raft disruption through cholesterol sequestration. Overall, these observations confirm a preferential enrichment of CD24 in lipid rafts and a more random distribution of CD44 in the plasma membrane as cause for the observed differences in protein clustering.


Assuntos
Antígeno CD24/análise , Membrana Celular/química , Ouro/análise , Receptores de Hialuronatos/análise , Nanopartículas Metálicas/análise , Ressonância de Plasmônio de Superfície/métodos , Antígeno CD24/biossíntese , Antígeno CD24/metabolismo , Membrana Celular/metabolismo , Humanos , Receptores de Hialuronatos/biossíntese , Receptores de Hialuronatos/metabolismo , Imuno-Histoquímica , Células MCF-7 , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA