Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genet ; 138(4): 355-361, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30810871

RESUMO

Molybdenum cofactor deficiency is an autosomal, recessively inherited metabolic disorder, which, in the absence of an effective therapy, leads to early childhood death due to neurological deterioration. In type A of the disease, cyclic pyranopterin monophosphate (cPMP) is missing, the first intermediate in the biosynthesis of the cofactor, and a biochemical substitution therapy using cPMP has been developed. A comparable approach for type B of the disease with a defect in the second step of the synthesis, formation of molybdopterin, so far has been hampered by the extreme instability of the corresponding metabolites. To explore avenues for a successful and safe gene therapy, knock-in mouse models were created carrying the mutations c.88C>T (p.Q30X) and c.726_727delAA, which are also found in human patients. Recombinant adeno-associated viruses (rAAVs) were constructed and used for postnatal intrahepatic injections of MoCo-deficient mice in a proof-of-concept approach. Singular administration of an appropriate virus dose in 60 animals prevented the otherwise devastating phenotype to a variable extent. While untreated mice did not survive for more than 2 weeks, some of the treated mice grew up to adulthood in both sexes.


Assuntos
Dependovirus , Terapia Genética/métodos , Erros Inatos do Metabolismo dos Metais/genética , Erros Inatos do Metabolismo dos Metais/terapia , Sulfurtransferases/genética , Animais , Dependovirus/genética , Modelos Animais de Doenças , Terapia de Reposição de Enzimas/métodos , Estudos de Viabilidade , Técnicas de Introdução de Genes , Humanos , Injeções , Erros Inatos do Metabolismo dos Metais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Sulfurtransferases/administração & dosagem
2.
J Inherit Metab Dis ; 41(2): 187-196, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29368224

RESUMO

Molybdenum cofactor deficiency is an autosomal recessive inborn error of metabolism, which results from mutations in genes involved in Moco biosynthesis. Moco serves as a cofactor of several enzymes, including sulfite oxidase. MoCD is clinically characterized by intractable seizures and severe, rapidly progressing neurodegeneration leading to death in early childhood in the majority of known cases. Here we report a patient with an unusual late disease onset and mild phenotype, characterized by a lack of seizures, normal early development, a decline triggered by febrile illness and a subsequent dystonic movement disorder. Genetic analysis revealed a homozygous c.1338delG MOCS1 mutation causing a frameshift (p.S442fs) with a premature termination of the MOCS1AB translation product at position 477 lacking the entire MOCS1B domain. Surprisingly, urine analysis detected trace amounts (1% of control) of the Moco degradation product urothione, suggesting a residual Moco synthesis in the patient, which was consistent with the mild clinical presentation. Therefore, we performed bioinformatic analysis of the patient's mutated MOCS1 transcript and found a potential Kozak-sequence downstream of the mutation site providing the possibility of an independent expression of a MOCS1B protein. Following the expression of the patient's MOCS1 cDNA in HEK293 cells we detected two proteins: a truncated MOCS1AB protein and a 22.4 kDa protein representing MOCS1B. Functional studies of both proteins confirmed activity of MOCS1B, but not of the truncated MOCS1AB. This finding demonstrates an unusual mechanism of translation re-initiation in the MOCS1 transcript, which results in trace amounts of functional MOCS1B protein being sufficient to partially protect the patient from the most severe symptoms of MoCD.


Assuntos
Coenzimas/metabolismo , Erros Inatos do Metabolismo dos Metais/metabolismo , Metaloproteínas/metabolismo , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/metabolismo , Pteridinas/metabolismo , Idade de Início , Carbono-Carbono Liases , Criança , Pré-Escolar , Dieta com Restrição de Proteínas , Mutação da Fase de Leitura , Predisposição Genética para Doença , Células HEK293 , Humanos , Imageamento por Ressonância Magnética , Masculino , Erros Inatos do Metabolismo dos Metais/diagnóstico , Erros Inatos do Metabolismo dos Metais/dietoterapia , Erros Inatos do Metabolismo dos Metais/genética , Cofatores de Molibdênio , Proteínas Nucleares/genética , Fragmentos de Peptídeos/genética , Fenótipo
3.
Hum Genet ; 135(7): 813-26, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27138983

RESUMO

Molybdenum cofactor (MoCo) deficiency is a rare, autosomal-recessive disorder, mainly caused by mutations in MOCS1 (MoCo deficiency type A) or MOCS2 (MoCo deficiency type B) genes; the absence of active MoCo results in a deficiency in all MoCo-dependent enzymes. Patients with MoCo deficiency present with neonatal seizures, feeding difficulties, severe developmental delay, brain atrophy and early childhood death. Although substitution therapy with cyclic pyranopterin monophosphate (cPMP) has been successfully used in both Mocs1 knockout mice and in patients with MoCo deficiency type A, there is currently no Mocs2 knockout mouse and no curative therapy for patients with MoCo deficiency type B. Therefore, we generated and characterized a Mocs2-null mouse model of MoCo deficiency type B. Expression analyses of Mocs2 revealed a ubiquitous expression pattern; however, at the cellular level, specific cells show prominent Mocs2 expression, e.g., neuronal cells in cortex, hippocampus and brainstem. Phenotypic analyses demonstrated that Mocs2 knockout mice failed to thrive and died within 11 days after birth. None of the tested MoCo-dependent enzymes were active in Mocs2-deficient mice, leading to elevated concentrations of purines, such as hypoxanthine and xanthine, and non-detectable levels of uric acid in the serum and urine. Moreover, elevated concentrations of S-sulfocysteine were measured in the serum and urine. Increased levels of xanthine resulted in bladder and kidney stone formation, whereas increased concentrations of toxic sulfite triggered neuronal apoptosis. In conclusion, Mocs2-deficient mice recapitulate the severe phenotype observed in humans and can now serve as a model for preclinical therapeutic approaches for MoCo deficiency type B.


Assuntos
Coenzimas/genética , Erros Inatos do Metabolismo dos Metais/genética , Metaloproteínas/genética , Proteínas Nucleares/genética , Animais , Apoptose/genética , Carbono-Carbono Liases , Coenzimas/biossíntese , Cisteína/análogos & derivados , Cisteína/urina , Modelos Animais de Doenças , Expressão Gênica , Humanos , Hipoxantina/sangue , Hipoxantina/urina , Erros Inatos do Metabolismo dos Metais/sangue , Erros Inatos do Metabolismo dos Metais/fisiopatologia , Erros Inatos do Metabolismo dos Metais/urina , Metaloproteínas/biossíntese , Camundongos , Camundongos Knockout , Cofatores de Molibdênio , Mutação , Proteínas Nucleares/biossíntese , Fenótipo , Pteridinas , Xantina/sangue , Xantina/urina
4.
Hum Mutat ; 32(1): 10-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21031595

RESUMO

All molybdenum-containing enzymes other than the bacterial nitrogenase share an identical molybdenum cofactor (MoCo), which is synthesized via a conserved pathway in all organisms and therefore also is called "universal molybdenum cofactor." In humans, four molybdoenzymes are known: aldehyde oxidase, mitochondrial amidoxime reducing component (mARC), xanthine oxidoreductase, and sulfite oxidase. Mutations in the genes encoding the biosynthetic MoCo pathway enzymes abrogate the activities of all molybdoenzymes and result in the "combined" form of MoCo deficiency, which is clinically very similar to isolated sulfite oxidase deficiency, caused by mutations in the gene for the corresponding apoenzyme. Both deficiencies are inherited as an autosomal-recessive disease and result in progressive neurological damage and early childhood death in most cases. The majority of mutations leading to MoCo deficiency have been identified in the genes MOCS1 (type A deficiency), MOCS2 (type B deficiency), with one reported in GPHN. For type A deficiency an effective substitution therapy has been described recently.


Assuntos
Proteínas de Transporte/genética , Proteínas de Membrana/genética , Erros Inatos do Metabolismo dos Metais/genética , Mutação , Proteínas Nucleares/genética , Sulfurtransferases/genética , Processamento Alternativo/genética , Animais , Carbono-Carbono Liases , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Humanos , Proteínas de Membrana/metabolismo , Erros Inatos do Metabolismo dos Metais/diagnóstico , Erros Inatos do Metabolismo dos Metais/patologia , Molibdoferredoxina/genética , Proteínas Nucleares/metabolismo , Fenótipo , Sulfurtransferases/metabolismo , Terapias em Estudo
5.
J Inherit Metab Dis ; 33 Suppl 3: S401-7, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20865336

RESUMO

Molybdenum cofactor (Moco) deficiency is a rare neurometabolic disorder, characterized by neurological impairment and refractive seizures, due to toxic accumulation of sulfite in the brain. Earlier it was suggested that in Moco-deficient humans maternal clearance of neurotoxic metabolites prevents prenatal brain damage. However, limited data are available about the time profile in which neurophysiologic deterioration occurs after birth. The amplitude-integrated electroencephalography (aEEG) is a bedside method in neonates to monitor cerebral recovery after hypoxic-ischemic insults, detect epileptic activity, and evaluate antiepileptic drug treatment. We describe a chronological series of changes in aEEG tracings in a neonate with Moco deficiency. He presented with myoclonic spasms and hypertonicity a few hours after birth, however, the aEEG pattern was still normal. Within 2 days, the aEEG rapidly changed into a burst suppression pattern with repetitive seizures. After antiepileptic treatment, the aEEG remained abnormal. In this patient, the normal aEEG pattern at birth may have been due to maternal clearance of sulfite in utero. After birth, accumulation of sulfite causes progressive brain damage, reflected by the progressive depression of the aEEG tracings. This is in agreement with the results from a Moco-deficient mouse model, suggesting that maternal sulfite clearance suppresses prenatal brain damage. To our knowledge, this is the first case report describing the chronological changes in the aEEG pattern in a Moco-deficient patient. Insight into the time profile in which neurologic deterioration in Moco-deficient humans occurs is essential, especially when potential treatment strategies are being evaluated.


Assuntos
Ondas Encefálicas , Encéfalo/fisiopatologia , Coenzimas/deficiência , Eletroencefalografia , Epilepsia/diagnóstico , Erros Inatos do Metabolismo dos Metais/diagnóstico , Metaloproteínas/deficiência , Anticonvulsivantes/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Ondas Encefálicas/efeitos dos fármacos , Coenzimas/genética , Imagem de Difusão por Ressonância Magnética , Epilepsia/tratamento farmacológico , Epilepsia/enzimologia , Epilepsia/fisiopatologia , Humanos , Recém-Nascido , Masculino , Erros Inatos do Metabolismo dos Metais/enzimologia , Erros Inatos do Metabolismo dos Metais/genética , Erros Inatos do Metabolismo dos Metais/fisiopatologia , Metaloproteínas/genética , Cofatores de Molibdênio , Molibdoferredoxina/genética , Valor Preditivo dos Testes , Pteridinas , Sulfitos/metabolismo , Fatores de Tempo , Resultado do Tratamento
6.
Genet Vaccines Ther ; 7: 9, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19538746

RESUMO

In a mouse model for molybdenum cofactor deficiency as an example for an inherited metabolic disease we have determined the dosage of recombinant AAV necessary to rescue the lethal deficiency phenotype. We demonstrated long-term expression of different expression cassettes delivered in a chimeric AAV capsid of serotype 1/2 and compared different routes of application. We then studied the effect of double and triple injections at different time points after birth and found a short neonatal window for non-response of the immune system. Exposition with rAAV capsids within this window allows transgene expression after a second rAAV transduction later. However, exposition within this window does not trigger immunotolerance to the viral capsid, which limits rAAV-mediated refurbishment of the transgene to only one more application outside this permissive window.

7.
Mol Genet Genomic Med ; 7(2): e00526, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30600599

RESUMO

BACKGROUND: The impact of complex alleles on CFTR processing and function has yet not been investigated in native human tissue. METHODS: Intestinal current measurements (ICM) followed by CFTR immunoblot were performed on rectal biopsies taken from two siblings who are compound heterozygous for the CFTR mutations p.Phe508del and the complex allele p.[Arg74Trp;Val201Met;Asp1270Asn]. RESULTS: Normal and subnormal chloride secretory responses in the ICM were associated with normal and fourfold reduced amounts of the mature glycoform band C CFTR, respectively, consistent with the unequal clinical phenotype of the siblings. CONCLUSION: The combined use of bioassay and protein analysis is particularly meaningful to resolve the CFTR phenotype of "indeterminate" borderline CFTR genotypes on a case-to-case basis.


Assuntos
Potenciais de Ação , Colo/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fenótipo , Linhagem Celular , Células Cultivadas , Criança , Cloretos/metabolismo , Colo/citologia , Colo/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiologia , Transporte de Íons , Masculino , Mutação de Sentido Incorreto
8.
Hum Mutat ; 21(6): 569-76, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12754701

RESUMO

Molybdenum cofactor deficiency in humans results in the loss of the activity of molybdoenzymes sulfite oxidase, xanthine dehydrogenase, and aldehyde oxidase. The resultant severe phenotype, which includes progressive neurological damage leading in most cases to early childhood death, results primarily from the deficiency of sulfite oxidase. All forms of molybdenum cofactor deficiency are inherited as autosomal recessive traits. The cofactor is an unstable reduced pterin with a unique four-carbon side chain, synthesized by a complex pathway that requires the products of at least four different genes (MOCS1, MOCS2, MOCS3, and GEPH). Disease-causing mutations have been identified in three of these genes: MOCS1, MOCS2, and GEPH. MOCS1 and MOCS2 have a bicistronic architecture; i.e., each gene encodes two proteins in different open reading frames. The protein products, MOCS1A and B and MOCS2A and B, are expressed either from different mRNAs generated by alternative splicing or by independent translation of a bicistronic mRNA. The gephyrin protein, encoded by a third locus, is required during cofactor assembly for insertion of molybdenum. A total of 32 different disease-causing mutations, including several common to more than one family, have been identified in molybdenum cofactor-deficient patients and their relatives.


Assuntos
Proteínas de Transporte/genética , Coenzimas , Proteínas de Membrana/genética , Metaloproteínas/biossíntese , Mutação/genética , Proteínas Nucleares/genética , Sulfurtransferases/genética , Animais , Carbono-Carbono Liases , Humanos , Proteínas de Membrana/deficiência , Metaloproteínas/deficiência , Metaloproteínas/genética , Dados de Sequência Molecular , Cofatores de Molibdênio , Pteridinas
9.
Neurosci Lett ; 369(3): 219-23, 2004 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-15464268

RESUMO

Mitochondrial transcription factor A (TFAM) is essential for transcription and replication of mammalian mitochondrial DNA (mtDNA). Disturbance of maintenance of mtDNA integrity or mitochondrial function may underlay neurodegenerative disorders such as Alzheimer disease (AD). TFAM, the gene encoding TFAM maps to chromosome 10q21.1, a region that showed linkage to late-onset AD in several study samples. We screened TFAM for single nucleotide polymorphisms (SNPs) and genotyped the G>C SNP rs1937, coding for S12T in mitochondrial signal sequence of TFAM, and the A>G SNP rs2306604 (IVS4+113A>G) in 372 AD patients and 295 nondemented control subjects. There was an association of genotype rs1937G/G with AD in females and an association of a TFAM haplotype with AD both in the whole sample and in females. The findings suggest that a TFAM haplotype containing rs1937 G (for S12) may be a moderate risk factor for AD.


Assuntos
Doença de Alzheimer/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Genótipo , Desequilíbrio de Ligação , Proteínas Mitocondriais/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Apolipoproteínas E/genética , Éxons , Feminino , Frequência do Gene , Humanos , Modelos Logísticos , Masculino , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos , Fatores Sexuais
10.
Pediatrics ; 125(5): e1249-54, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20385644

RESUMO

Molybdenum cofactor deficiency (MoCD) is a rare metabolic disorder characterized by severe and rapidly progressive neurologic damage caused by the functional loss of sulfite oxidase, 1 of 4 molybdenum-dependent enzymes. To date, no effective therapy is available for MoCD, and death in early infancy has been the usual outcome. We report here the case of a patient who was diagnosed with MoCD at the age of 6 days. Substitution therapy with purified cyclic pyranopterin monophosphate (cPMP) was started on day 36 by daily intravenous administration of 80 to 160 microg of cPMP/kg of body weight. Within 1 to 2 weeks, all urinary markers of sulfite oxidase (sulfite, S-sulfocysteine, thiosulfate) and xanthine oxidase deficiency (xanthine, uric acid) returned to almost normal readings and stayed constant (>450 days of treatment). Clinically, the infant became more alert, convulsions and twitching disappeared within the first 2 weeks, and an electroencephalogram showed the return of rhythmic elements and markedly reduced epileptiform discharges. Substitution of cPMP represents the first causative therapy available for patients with MoCD. We demonstrate efficient uptake of cPMP and restoration of molybdenum cofactor-dependent enzyme activities. Further neurodegeneration by toxic metabolites was stopped in the reported patient. We also demonstrated the feasibility to detect MoCD in newborn-screening cards to enable early diagnosis.


Assuntos
Encefalopatias Metabólicas Congênitas/tratamento farmacológico , Coenzimas/deficiência , Metaloproteínas/deficiência , Pterinas/administração & dosagem , Erros Inatos do Metabolismo da Purina-Pirimidina/tratamento farmacológico , Sulfito Oxidase/deficiência , Encefalopatias Metabólicas Congênitas/diagnóstico , Diagnóstico Diferencial , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Humanos , Recém-Nascido , Infusões Intravenosas , Cofatores de Molibdênio , Compostos Organofosforados/uso terapêutico , Pteridinas , Pterinas/uso terapêutico , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico
11.
Brain Dev ; 32(7): 544-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19793632

RESUMO

Sulfite oxidase is a mitochondrial enzyme encoded by the SUOX gene and essential for the detoxification of sulfite which results mainly from the catabolism of sulfur-containing amino acids. Decreased activity of this enzyme can either be due to mutations in the SUOX gene or secondary to defects in the synthesis of its cofactor, the molybdenum cofactor. Defects in the synthesis of the molybdenum cofactor are caused by mutations in one of the genes MOCS1, MOCS2, MOCS3 and GEPH and result in combined deficiencies of the enzymes sulfite oxidase, xanthine dehydrogenase and aldehyde oxidase. Although present in many ethnic groups, isolated sulfite oxidase deficiency and molybdenum cofactor deficiency are rare inborn errors of metabolism, which makes awareness of key clinical and laboratory features of affected individuals crucial for early diagnosis. We report clinical, radiologic, biochemical and genetic data on a Brazilian and on a Turkish child with sulfite oxidase deficiency due to the isolated defect and impaired synthesis of the molybdenum cofactor, respectively. Both patients presented with early onset seizures and neurological deterioration. They showed no sulfite oxidase activity in fibroblasts and were homozygous for the mutations c.1136A>G in the SUOX gene and c.667insCGA in the MOCS1 gene, respectively. Widely available routine laboratory tests such as assessment of total homocysteine and uric acid are indicated in children with a clinical presentation resembling that of hypoxic ischemic encephalopathy and may help in obtaining a tentative diagnosis locally, which requires confirmation by specialized laboratories.


Assuntos
Coenzimas/deficiência , Encefalomalacia/enzimologia , Encefalomalacia/patologia , Doenças do Recém-Nascido/enzimologia , Doenças do Recém-Nascido/etiologia , Metaloproteínas/deficiência , Convulsões/etiologia , Sulfito Oxidase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Erros Inatos do Metabolismo dos Aminoácidos/genética , Brasil , Coenzimas/genética , Análise Mutacional de DNA , Diagnóstico Diferencial , Encefalomalacia/etiologia , Encefalomalacia/genética , Feminino , Humanos , Recém-Nascido , Doenças do Recém-Nascido/genética , Doenças do Recém-Nascido/patologia , Metaloproteínas/genética , Cofatores de Molibdênio , Pteridinas , Convulsões/complicações , Sulfito Oxidase/genética , Turquia
12.
Pediatr Radiol ; 37(10): 1043-6, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17704913

RESUMO

Molybdenum cofactor is essential for the function of three human enzymes: sulphite oxidase, xanthine dehydrogenase, and aldehyde oxidase. Molybdenum cofactor deficiency is a rare autosomal recessively inherited disease. Disturbed development and damage to the brain may occur as a result of accumulation of toxic levels of sulphite. The CT and MRI findings include severe early brain abnormalities and have been widely reported, but the cranial US imaging findings have seldom been reported. We report a chronological series of cranial US images obtained from an affected infant that show the rapid development of cerebral atrophy, calcifications and white matter cysts. Our report supports the utility of cranial US, a noninvasive bed-side technique, in the detection and follow-up of these rapidly changing lesions.


Assuntos
Encefalopatias/diagnóstico , Calcinose/diagnóstico , Coenzimas/deficiência , Ecoencefalografia/métodos , Erros Inatos do Metabolismo/diagnóstico , Metaloproteínas/deficiência , Atrofia/diagnóstico , Humanos , Recém-Nascido , Masculino , Cofatores de Molibdênio , Pteridinas , Síndrome
13.
Mol Genet Metab ; 89(3): 210-3, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16737835

RESUMO

The small and large subunits of molybdopterin (MPT) synthase (MOCS2A and MOCS2B), are both encoded by the MOCS2 gene in overlapping and shifted open reading frames (ORFs), which is a highly unusual structure for eukaryotes. Theoretical analysis of genomic sequences suggested that the expression of these overlapping ORFs is facilitated by the use of alternate first exons leading to alternative transcripts. Here, we confirm the existence of these overlapping transcripts experimentally. Further, we identified a deletion in a molybdenum cofactor deficient patient, which removes the start codon for the small subunit (MOCS2A). We observed undisturbed production of both transcripts, while Western blot analysis demonstrated that MOCS2B, the large subunit, is unstable in the absence of MOCS2A. This reveals new insights into the expression of this evolutionary ancient anabolic system.


Assuntos
Mutação/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Sulfurtransferases/genética , Sulfurtransferases/metabolismo , Sequência de Bases , Análise Mutacional de DNA , Éxons/genética , Evolução Fatal , Genoma Humano/genética , Humanos , Recém-Nascido , Extratos Hepáticos , Masculino , Dados de Sequência Molecular , Splicing de RNA/genética
14.
Hum Genet ; 117(6): 565-70, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16021469

RESUMO

Molybdenum cofactor deficiency (MIM#252150) is a severe autosomal-recessive disorder with a devastating outcome. The cofactor is the product of a complex biosynthetic pathway involving four different genes (MOCS1, MOCS2, MOCS3 and GEPH). This disorder is caused almost exclusively by mutations in the MOCS1 or MOCS2 genes. Mutations affecting this biosynthetic pathway result in a lethal phenotype manifested by progressive neurological damage via the inactivation of the molybdenum cofactor-dependent enzyme, sulphite oxidase. Here we describe a total of ten novel disease-causing mutations in the MOCS1 and MOCS2 genes. Nine out of these ten mutations were classified as pathogenic in nature, since they create a stop codon, affect constitutive splice site positions, or change strictly conserved motifs. The tenth mutation abolishes the stop codon of the MOCS2B gene, thus elongating the corresponding protein. The mutation was expressed in vitro and was found to abolish the binding affinities of the large subunit of molybdopterin synthase (MOCS2B) for both precursor Z and the small subunit of molybdopterin synthase (MOCS2A).


Assuntos
Coenzimas/genética , Metaloproteínas/genética , Proteínas Nucleares/genética , Sulfurtransferases/genética , Sulfurtransferases/metabolismo , Carbono-Carbono Liases , Coenzimas/deficiência , Humanos , Metaloproteínas/deficiência , Cofatores de Molibdênio , Mutação , Pteridinas
15.
Mol Genet Metab ; 85(1): 12-20, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15862276

RESUMO

Molybdenum cofactor (Moco)-deficiency is a lethal autosomal recessive disease, for which until now no effective therapy is available. The biochemical hallmark of this disorder is the inactivity of the Moco-dependent sulfite oxidase, which results in elevated sulfite and diminished sulfate levels throughout the organism. In humans, Moco-deficiency results in neurological damage, which is apparent in untreatable seizures and various brain dysmorphisms. We have recently described a murine model for Moco-deficiency, which reflects all enzyme and metabolite changes observed in the patients, and an efficient therapy using a biosynthetic precursor of Moco has been established in this animal model. We now analyzed these mice in detail and excluded morphological brain damage, while expression analysis with microarrays indicates a massive cell death program. This neuronal damage appears to be triggered by elevated sulfite levels and is ameliorated in affected embryos by maternal clearance.


Assuntos
Coenzimas/deficiência , Coenzimas/farmacocinética , Metaloproteínas/deficiência , Metaloproteínas/farmacocinética , Proteínas Nucleares/deficiência , Pteridinas/farmacocinética , Animais , Encéfalo/patologia , Carbono-Carbono Liases , Análise por Conglomerados , DNA Complementar , Modelos Animais de Doenças , Genótipo , Humanos , Taxa de Depuração Metabólica , Camundongos , Camundongos Knockout , Cofatores de Molibdênio , Bainha de Mielina/patologia , Proteínas Nucleares/genética , Fenótipo , RNA/genética , Transcrição Gênica
16.
Mol Genet Metab ; 76(4): 340-3, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12208140

RESUMO

The bicistronic MOCS1 gene encodes two enzymatic activities that are necessary for the biosynthesis of the molybdenum cofactor (MoCo). Mutations in either of the two consecutive open reading frames are responsible for the majority of MoCo deficiency cases and result in a complementation group A phenotype. Two cDNA sequences have been described, which differ in the 5' sequence and encode for two forms of the protein MOCS1A with variable N-terminal sequences. We have reinvestigated the corresponding region by means of cDNA analysis and databank searches. This revealed three different splice variants, including two mutually exclusive first exons and a facultative intron. All three forms can be found in eight different human tissues in a constant ratio, which excludes tissue specificity of the different isoforms.


Assuntos
Códon de Iniciação , Éxons , Proteínas Nucleares/genética , Processamento Alternativo/genética , Sequência de Bases , Carbono-Carbono Liases , Variação Genética , Humanos , Dados de Sequência Molecular , Isoformas de Proteínas
17.
Hum Mol Genet ; 11(26): 3309-17, 2002 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-12471057

RESUMO

Human molybdenum cofactor deficiency is a rare and devastating autosomal-recessive disease for which no therapy is known. The absence of active sulfite oxidase-a molybdenum cofactor-dependent enzyme-results in neonatal seizures and early childhood death. Most patients harbor mutations in the MOCS1 gene, whose murine homolog was disrupted by homologous recombination with a targeting vector. As in humans, heterozygous mice display no symptoms, but homozygous animals die between days 1 and 11 after birth. Biochemical analyis of these animals shows that molydopterin and active cofactor are undetectable. They do not possess any sulfite oxidase or xanthine dehydrogenase activity. No organ abnormalities were observed and the synaptic localization of inhibitory receptors, which was found to be disturbed in molybdenum cofactor deficient-mice with a Gephyrin mutation, appears normal. MOCS1(-/-) mice could be a suitable animal model for biochemical and/or genetic therapy approaches.


Assuntos
Coenzimas , Modelos Animais de Doenças , Metaloproteínas/deficiência , Proteínas Nucleares/genética , Animais , Carbono-Carbono Liases , Humanos , Metaloproteínas/genética , Metaloproteínas/metabolismo , Camundongos , Camundongos Transgênicos , Cofatores de Molibdênio , Proteínas Nucleares/deficiência , Proteínas Nucleares/metabolismo , Pteridinas/metabolismo , Sulfitos/urina , Ácido Úrico/urina , Xantina/urina , Xantina Desidrogenase/metabolismo
18.
Hum Mol Genet ; 13(12): 1249-55, 2004 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15115759

RESUMO

Substitution therapies for orphan genetic diseases, including enzyme replacement methods, are frequently hampered by the limited availability of the required therapeutic substance. We describe the isolation of a pterin intermediate from bacteria that was successfully used for the therapy of a hitherto incurable and lethal disease. Molybdenum cofactor (Moco) deficiency is a pleiotropic genetic disorder characterized by the loss of the molybdenum-dependent enzymes sulphite oxidase, xanthine oxidoreductase and aldehyde oxidase due to mutations in Moco biosynthesis genes. An intermediate of this pathway-'precursor Z'-is more stable than the cofactor itself and has an identical structure in all phyla. Thus, it was overproduced in the bacterium Escherichia coli, purified and used to inject precursor Z-deficient knockout mice that display a phenotype which resembles that of the human deficiency state. Precursor Z-substituted mice reach adulthood and fertility. Biochemical analyses further suggest that the described treatment can lead to the alleviation of most symptoms associated with human Moco deficiency.


Assuntos
Coenzimas/biossíntese , Coenzimas/deficiência , Deficiências Nutricionais/tratamento farmacológico , Deficiências Nutricionais/metabolismo , Proteínas de Escherichia coli/uso terapêutico , Metaloproteínas/biossíntese , Metaloproteínas/deficiência , Precursores de Proteínas/uso terapêutico , Animais , Coenzimas/genética , Coenzimas/metabolismo , Deficiências Nutricionais/patologia , Ativação Enzimática , Proteínas de Escherichia coli/administração & dosagem , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Metaloproteínas/genética , Metaloproteínas/metabolismo , Camundongos , Camundongos Knockout , Modelos Animais , Cofatores de Molibdênio , Precursores de Proteínas/administração & dosagem , Precursores de Proteínas/genética , Precursores de Proteínas/isolamento & purificação , Pteridinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA