Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Comput Chem ; 44(10): 1052-1063, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36602234

RESUMO

Polymorphic beryllium oxide has been theoretically investigated from first principles as regards orbital occupancies, chemical bonding, polarization, as well as dielectric properties. By means of Crystal-Orbital Bond Index (COBI) analysis, the important role of the 2p orbitals on beryllium has been elucidated, in particular in terms of the correlation between polarization and beryllium-atom displacement, including the impact of the latter on the covalency of the BeO bond. In addition, several structural possibilities for a Bex Mg1-x O solid solution have been investigated for a Be content between 6% and 22%; for those, dynamically stable structures have been found, displaying large polarization values, more covalent BeO bonds, and a tendency for tetrahedral Be coordination. The dynamically unstable structures, however, resemble rock-salt BeO in their local structural properties around the Be atom. High dielectric constants and band gaps indicating insulating behavior have been found for those.

2.
Inorg Chem ; 62(49): 20162-20171, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37988253

RESUMO

Covalent chemical bonding beyond the two-center two-electron (2c-2e) bond is well-known for (inter)halogenic compounds, in particular, electron-rich multicenter (or hypervalent) bonding of the three-center four-electron (3c-4e) type to explain both their structure and stability. In the present work, we examine different solid-state polyiodides by combining both local orbital wave function and projected force constant analysis in order to numerically quantify the influence of multicenter (hypervalent) bonding based on periodic density functional theory (DFT) calculations. After linking our findings to established qualitative theories on multicenter bonding, particularly, Alcock's "secondary" bonding, we relate the bonding behavior in polyiodides to industrially relevant phase-change materials of the Ge-Sb-Te class, finding further evidence for the same underlying cause as regards chemical bonding in both material classes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA