Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Age Ageing ; 53(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38520142

RESUMO

BACKGROUND: Falls are common in older adults and can devastate personal independence through injury such as fracture and fear of future falls. Methods to identify people for falls prevention interventions are currently limited, with high risks of bias in published prediction models. We have developed and externally validated the eFalls prediction model using routinely collected primary care electronic health records (EHR) to predict risk of emergency department attendance/hospitalisation with fall or fracture within 1 year. METHODS: Data comprised two independent, retrospective cohorts of adults aged ≥65 years: the population of Wales, from the Secure Anonymised Information Linkage Databank (model development); the population of Bradford and Airedale, England, from Connected Bradford (external validation). Predictors included electronic frailty index components, supplemented with variables informed by literature reviews and clinical expertise. Fall/fracture risk was modelled using multivariable logistic regression with a Least Absolute Shrinkage and Selection Operator penalty. Predictive performance was assessed through calibration, discrimination and clinical utility. Apparent, internal-external cross-validation and external validation performance were assessed across general practices and in clinically relevant subgroups. RESULTS: The model's discrimination performance (c-statistic) was 0.72 (95% confidence interval, CI: 0.68 to 0.76) on internal-external cross-validation and 0.82 (95% CI: 0.80 to 0.83) on external validation. Calibration was variable across practices, with some over-prediction in the validation population (calibration-in-the-large, -0.87; 95% CI: -0.96 to -0.78). Clinical utility on external validation was improved after recalibration. CONCLUSION: The eFalls prediction model shows good performance and could support proactive stratification for falls prevention services if appropriately embedded into primary care EHR systems.


Assuntos
Fraturas Ósseas , Hospitalização , Humanos , Idoso , Estudos Retrospectivos , Fraturas Ósseas/diagnóstico , Fraturas Ósseas/epidemiologia , Fraturas Ósseas/prevenção & controle , Modelos Logísticos
2.
J Neurol Sci ; 463: 123089, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38991323

RESUMO

BACKGROUND: The core clinical sign of Parkinson's disease (PD) is bradykinesia, for which a standard test is finger tapping: the clinician observes a person repetitively tap finger and thumb together. That requires an expert eye, a scarce resource, and even experts show variability and inaccuracy. Existing applications of technology to finger tapping reduce the tapping signal to one-dimensional measures, with researcher-defined features derived from those measures. OBJECTIVES: (1) To apply a deep learning neural network directly to video of finger tapping, without human-defined measures/features, and determine classification accuracy for idiopathic PD versus controls. (2) To visualise the features learned by the model. METHODS: 152 smartphone videos of 10s finger tapping were collected from 40 people with PD and 37 controls. We down-sampled pixel dimensions and videos were split into 1 s clips. A 3D convolutional neural network was trained on these clips. RESULTS: For discriminating PD from controls, our model showed training accuracy 0.91, and test accuracy 0.69, with test precision 0.73, test recall 0.76 and test AUROC 0.76. We also report class activation maps for the five most predictive features. These show the spatial and temporal sections of video upon which the network focuses attention to make a prediction, including an apparent dropping thumb movement distinct for the PD group. CONCLUSIONS: A deep learning neural network can be applied directly to standard video of finger tapping, to distinguish PD from controls, without a requirement to extract a one-dimensional signal from the video, or pre-define tapping features.


Assuntos
Aprendizado Profundo , Doença de Parkinson , Gravação em Vídeo , Humanos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/diagnóstico , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Gravação em Vídeo/métodos , Dedos/fisiopatologia , Movimento/fisiologia , Redes Neurais de Computação , Hipocinesia/fisiopatologia , Hipocinesia/diagnóstico , Smartphone
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA