Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160436

RESUMO

Carbon-13 isotopomics of triacylglycerol (TAG) fatty acids or free fatty acids in biological matrices holds considerable potential in food authentication, forensic investigations, metabolic studies, and medical research. However, challenges arise in the isotopic analysis of short- and medium-chain (C4 to C10) fatty acid methyl esters (SMCFAMEs) through gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). The high volatility of these esters results in losses during their preparation, leading to isotopic fractionation. Moreover, the methoxy group added to acyl chains requires the correction of δ13C values, thereby increasing the uncertainty of the final results. Analyzing free fatty acids (FFAs) addresses both issues encountered with SMCFAMEs. To achieve this objective, we have developed a new protocol enabling the isotopomics of individual fatty acids (FAs) by GC-C-IRMS. The same experiment also provides the FA profile, i.e., the relative percentage of each FA in the TAG hydrolysate or its concentration in the studied matrix. The method exhibited high precision, as evidenced by the repeatability and within-lab reproducibility of results when tested on TAGs from both animal and vegetal origins. Compared to the analysis of FAMEs by GC-C-IRMS, the current procedure also brings several improvements in alignment with the principles of green analytical chemistry and green sample preparation. Thus, we present a two-in-one method for 13C-isotopomic and metabolomic biomarker quantitation within quasi-universal TAG compounds, encompassing the short- and medium-acyl chains.

2.
Anal Bioanal Chem ; 413(6): 1521-1532, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33506339

RESUMO

Cholesterol, the principal zoosterol, is a key metabolite linked to several health complications. Studies have shown its potential as a metabolic biomarker for predicting various diseases and determining food origin. However, the existing INEPT (insensitive nuclei enhanced by polarization transfer) 13C position-specific isotope analysis method of cholesterol by NMR was not suitable for very precise analysis of small quantities due to its long acquisition time and therefore is restricted to products rich in cholesterol. In this work, a symmetric and adiabatic heteronuclear single quantum coherence (HSQC) 2D NMR sequence was developed for the high-precision (few permil) analysis of small quantities of cholesterol. Adiabatic pulses were incremented for improving precision and sensitivity. Moreover, several strategies such as the use of non-uniform sampling, linear prediction, and variable recycling time were optimized to reduce the acquisition time. The number of increments and spectral range were also adjusted. The method was developed on a system with a cryogenically cooled probe and was not tested on a room-temperature system. Our new approach allowed analyzing as low as 5 mg of cholesterol in 31 min with a long-term repeatability lower than 2‰ on the 24 non-quaternary carbon atoms of the molecule comparing to 16.2 h for the same quantity using the existing INEPT method. This result makes conceivable the isotope analysis of matrices low in cholesterol. Graphical abstract.


Assuntos
Isótopos de Carbono/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Queijo/análise , Colesterol/análise , Análise de Alimentos/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Prótons , Algoritmos , Calibragem , Cromatografia Gasosa , Isótopos , Reprodutibilidade dos Testes , Temperatura
3.
Magn Reson Chem ; 57(12): 1136-1142, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31222922

RESUMO

The position-specific 15 N isotope content in organic molecules, at natural abundance, is for the first time determined by using a quantitative methodology based on 15 N Nuclear Magnetic Resonance (NMR) spectrometry. 15 N NMR spectra are obtained by using an adiabatic "Full-Spectrum" INEPT sequence in order to make possible 15 N NMR experiments with a high signal-to-noise ratio (>500), to reach a precision with a standard deviation below 1‰ (0.1%). This level of precision is required for observing small changes in 15 N content associated to 15 N isotope effects. As an illustration, the measurement of an isotopic enrichment factor ε for each 15 N isotopomer is presented for 1-methylimidazole induced during a separation process on a silica column. The precision expressed as the long-term repeatability of the methodology is good enough to evaluate small changes in the 15 N isotope contents for a given isotopomer. As observed for 13 C, inverse and normal 15 N isotope effects occur concomitantly, giving access to new information on the origin of the 15 N isotope effects, not detectable by other techniques such as isotope ratio measured by Mass Spectrometry for which bulk (average) values are obtained.

4.
Anal Chem ; 90(14): 8692-8699, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29911856

RESUMO

For the last ten years, quantitative isotope ratio monitoring 13C NMR (irm-13C NMR) has been successfully tested and proven as an efficient tool for the determination of position-specific 13C/12C ratios. Several applications in different domains have shown the interest in this technique. In the context of origin assignment, the possibility to track the distribution network of illicit drugs or cutting agents is of prime importance. However irm-13C NMR still suffers from a relative lack of sensitivity limiting its dissemination among control laboratories. Improvements were proposed to reduce experiment time by using the INEPT sequence ("Insensitive Nuclei Enhanced by Polarization Transfer") based on polarization transfer from highly sensitive 1H to less sensitive 13C. Several applications based on the use of the one bond scalar coupling between 1H and 13C (1 JCH) have shown the potential of this methodology in terms of short experimental duration. However, the isotopic information given by quaternary carbons was lost. The aim of this study is to extend this approach by using short- and long-range coupling (1 JCH, 2 JCH, and 3 JCH) in order to have access to all 13C/12C position-specific ratios, i.e., acquisition of the full spectrum (FS-INEPT). It is shown that this innovative tool provides both sensitivity gain-thanks to the long-range polarization transfer-and appropriate repeatability. The relative isotopic profiles allowed the classification of two cutting agents, caffeine and paracetamol (acetaminophen), according to their origin, as it was previously observed with "classical" irm-13C NMR but consuming much less sample and/or reducing the experimental time.

5.
Planta Med ; 84(12-13): 935-940, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29653457

RESUMO

Within the food and pharmaceutical industries, there is an increasing legislative requirement for the accurate labeling of the product's origin. A key feature of this is to indicate whether the product is of natural or synthetic origin. With reference to this context, we have investigated three alkaloids commonly exploited for human use: nicotine, atropine, and caffeine. We have measured by 13C nuclear magnetic resonance spectrometry the position-specific distribution of 13C at natural abundance within several samples of each of these target molecules. This technique is well suited to distinguishing between origins, as the distribution of the 13C isotope reflects the primary source of the carbon atoms and the process by which the molecule was (bio)synthesized. Our findings indicate that labeling can be misleading, especially in relation to a supplied compound being labeled as "synthetic" even though its 13C profile indicates a natural origin.


Assuntos
Alcaloides/análise , Espectroscopia de Ressonância Magnética/métodos , Alcaloides/metabolismo , Atropina/metabolismo , Cafeína/metabolismo , Isótopos de Carbono/análise , Nicotina/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(27): 8296-301, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26106160

RESUMO

Tramadol, previously only known as a synthetic analgesic, has now been found in the bark and wood of roots of the African medicinal tree Nauclea latifolia. At present, no direct evidence is available as to the biosynthetic pathway of its unusual skeleton. To provide guidance as to possible biosynthetic precursors, we have adopted a novel approach of retro-biosynthesis based on the position-specific distribution of isotopes in the extracted compound. Relatively recent developments in isotope ratio monitoring by (13)C NMR spectrometry make possible the measurement of the nonstatistical position-specific natural abundance distribution of (13)C (δ(13)Ci) within the molecule with better than 1‰ precision. Very substantial variation in the (13)C positional distribution is found: between δ(13)Ci = -11 and -53‰. Distribution is not random and it is argued that the pattern observed can substantially be interpreted in relation to known causes of isotope fractionation in natural products. Thus, a plausible biosynthetic scheme based on sound biosynthetic principals of precursor-substrate relationships can be proposed. In addition, data obtained from the (18)O/(16)O ratios in the oxygen atoms of the compound add support to the deductions made from the carbon isotope analysis. This paper shows how the use of (13)C NMR at natural abundance can help with proposing a biosynthetic route to compounds newly found in nature or those difficult to tackle by conventional means.


Assuntos
Vias Biossintéticas , Marcação por Isótopo/métodos , Espectroscopia de Ressonância Magnética/métodos , Tramadol/metabolismo , Carbono/metabolismo , Isótopos de Carbono/metabolismo , Espectrometria de Massas , Estrutura Molecular , Oxigênio/metabolismo , Isótopos de Oxigênio/metabolismo , Casca de Planta/química , Raízes de Plantas/química , Rubiaceae/química , Tramadol/química , Tramadol/isolamento & purificação , Madeira/química
7.
J Biol Chem ; 291(32): 16620-9, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27288405

RESUMO

During the biosynthesis of natural products, isotopic fractionation occurs due to the selectivity of enzymes for the heavier or lighter isotopomers. As only some of the positions in the molecule are implicated in a given reaction mechanism, position-specific fractionation occurs, leading to a non-statistical distribution of isotopes. This can be accessed by isotope ratio monitoring (13)C NMR spectrometry. The solanaceous alkaloids S-(-)-nicotine and hyoscyamine (atropine) are related in having a common intermediate, but downstream enzymatic steps diverge, providing a relevant test case to: (a) elucidate the isotopic affiliation between carbon atoms in the alkaloids and those in the precursors; (b) obtain information about the kinetic isotope effects of as yet undescribed enzymes, thus to make predictions as to their possible mechanism(s). We show that the position-specific (13)C/(12)C ratios in the different moieties of these compounds can satisfactorily be related to their known precursors and to the known kinetic isotope effects of enzymes involved in their biosynthesis, or to similar reaction mechanisms. Thus, the pathway to the common intermediate, N-methyl-Δ(1)-pyrrolinium, is seen to introduce similar isotope distribution patterns in the two alkaloids independent of plant species, whereas the remaining atoms of each target compound, which are of different origins, reflect their specific metabolic ancestry. We further demonstrate that the measured (13)C distribution pattern can be used to deduce aspects of the reaction mechanism of enzymes still to be identified.


Assuntos
Nicotiana/metabolismo , Nicotina/biossíntese , Tropanos/metabolismo , Radioisótopos de Carbono/química , Nicotina/química , Nicotiana/química , Tropanos/química
8.
Arch Biochem Biophys ; 635: 60-65, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29074162

RESUMO

Many O-methyl and N-methyl groups in natural products are depleted in 13C relative to the rest of the molecule. These methyl groups are derived from the C-1 tetrahydrofolate pool via l-methionine, the principle donor of methyl units. Depletion could occur at a number of steps in the pathway. We have tested the hypothesis that methionine biosynthesis is implicated in this depletion by using a combined experimental and theoretical approach. By using isotope ratio monitoring 13C NMR spectrometry to measure the position-specific distribution of 13C within l-methionine of natural origin, it is shown that the S-methyl group is depleted in 13C by ∼20‰ relative to the other positions in the molecule. In parallel, we have conducted a basic theoretical analysis of the reaction pathway of methionine synthase to assess whether the enzyme cobalamin-independent l-methionine synthase (EC 2.1.1.14)-that catalyzes the synthesis of l-methionine from 5-methyl-tetrahydrofolate and homocysteine-plays a role in causing this depletion. Calculation predicts a strong normal 13C kinetic isotope effect (1.087) associated with this enzyme. Hence, depletion in 13C in the S-methyl of l-methionine during biosynthesis can be identified as an important factor contributing to the general depletion seen in many O-methyl and N-methyl groups of natural products.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/ultraestrutura , Isótopos de Carbono/química , Metionina/química , Nitrogênio/química , Oxigênio/química , Sítios de Ligação , Simulação por Computador , Ativação Enzimática , Metilação , Modelos Químicos , Modelos Moleculares , Ligação Proteica , Especificidade por Substrato
9.
Magn Reson Chem ; 55(2): 77-90, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27921330

RESUMO

The most widely used method for isotope analysis at natural abundance is isotope ratio monitoring by Mass Spectrometry (irm-MS) which provides bulk isotopic composition in 2 H, 13 C, 15 N, 18 O or 34 S. However, in the 1980s, the direct access to Site-specific Natural Isotope Fractionation by Nuclear Magnetic Resonance (SNIF-NMRTM ) was immediately recognized as a powerful technique to authenticate the origin of natural or synthetic products. The initial - and still most popular - application consisted in detecting the chaptalization of wines by irm-2 H NMR. The approach has been extended to a wide range of methodologies over the last decade, paving the way to a wide range of applications, not only in the field of authentication but also to study metabolism. In particular, the emerging irm-13 C NMR approach delivers direct access to position-specific 13 C isotope content at natural abundance. After highlighting the application scope of irm-NMR (2 H and 13 C), this article describes the major improvements which made possible to reach the required accuracy of 1‰ (0.1%) in irm-13 C NMR. The last part of the manuscript summarizes the different steps to perform isotope analysis as a function of the sample properties (concentration, peak overlap) and the kind of targeted isotopic information (authentication, affiliation). Copyright © 2016 John Wiley & Sons, Ltd.

10.
J Biol Chem ; 290(7): 4118-28, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25538251

RESUMO

During the anaerobic fermentation of glucose to ethanol, the three micro-organisms Saccharomyces cerevisiae, Zymomonas mobilis, and Leuconostoc mesenteroides exploit, respectively, the Embden-Meyerhof-Parnas, the Entner-Doudoroff, and the reductive pentose phosphate pathways. Thus, the atoms incorporated into ethanol do not have the same affiliation to the atomic positions in glucose. The isotopic fractionation occurring in each pathway at both the methylene and methyl positions of ethanol has been investigated by isotopic quantitative (13)C NMR spectrometry with the aim of observing whether an isotope redistribution characteristic of the enzymes active in each pathway can be measured. First, it is found that each pathway has a unique isotope redistribution signature. Second, for the methylene group, a significant apparent kinetic isotope effect is only found in the reductive pentose phosphate pathway. Third, the apparent kinetic isotope effects related to the methyl group are more pronounced than for the methylene group. These findings can (i) be related to known kinetic isotope effects of some of the enzymes concerned and (ii) give indicators as to which steps in the pathways are likely to be influencing the final isotopic composition in the ethanol.


Assuntos
Radioisótopos de Carbono/farmacocinética , Etanol/metabolismo , Fermentação/fisiologia , Glucose/metabolismo , Leuconostoc/metabolismo , Redes e Vias Metabólicas/fisiologia , Saccharomyces cerevisiae/metabolismo , Zymomonas/metabolismo , Glicólise , Espectroscopia de Ressonância Magnética , Via de Pentose Fosfato , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Distribuição Tecidual
11.
Planta Med ; 82(11-12): 967-72, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27224268

RESUMO

The seeds of Carapa procera are exploited extensively in West African ethnopharmacy for the treatment of several pathologies, including inflammation. They also are effective as insect antifeedants and as a mosquito repellent. With the aim of identifying bioactive principles, an ethyl acetate extract of the defatted seeds was made and fractionated. Two principle compounds were isolated. One of these, 5,6-dehydro-7-deacetoxy-7-oxogedunin (1), while known from another genus of the Meliaceae, is newly identified from the genus Carapa and its X-ray structure is described for the first time. In addition, 1 displayed strong anti-clonogenic activity at 10 µM. The other compound, mexicanolide (2), is known from this species and showed neither cytotoxicity nor anti-clonogenicity. These differences in efficacy are discussed in relation to known structure-activity relationships of limonoids.


Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Limoninas/isolamento & purificação , Meliaceae/química , Extratos Vegetais/isolamento & purificação , Triterpenos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Limoninas/química , Limoninas/farmacologia , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Sementes/química , Triterpenos/química , Triterpenos/farmacologia
12.
Anal Chem ; 87(15): 7550-4, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26158226

RESUMO

The intramolecular (13)C composition of a molecule retains evidence relevant to its (bio)synthetic history and can provide valuable information in numerous fields ranging from biochemistry to environmental sciences. Isotope ratio monitoring by (13)C NMR spectrometry (irm-(13)C NMR) is a generic method that offers the potential to conduct (13)C position-specific isotope analysis with a precision better than 1‰. Until now, determining absolute values also required measurement of the global (or bulk) (13)C composition (δ(13)Cg) by mass spectrometry. In a radical new approach, it is shown that an internal isotopic chemical reference for irm-(13)C NMR can be used instead. The strategy uses (1)H NMR to quantify both the number of moles of the reference and of the studied compound present in the NMR tube. Thus, the sample preparation protocol is greatly simplified, bypassing the previous requirement for precise purity and mass determination. The key to accurate results is suppressing the effect of radiation damping in (1)H NMR which produces signal distortion and alters quantification. The methodology, applied to vanillin with dimethylsulfone as an internal standard, has an equivalent accuracy (<1‰) to that of the conventional approach. Hence, it was possible to clearly identify vanillin from different origins based on the (13)C isotopic profiles.

13.
Anal Chem ; 87(13): 6600-6, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26067163

RESUMO

The natural xanthines caffeine, theobromine, and theophylline are of major commercial importance as flavor constituents in coffee, cocoa, tea, and a number of other beverages. However, their exploitation for authenticity, a requirement in these commodities that have a large origin-based price-range, by the standard method of isotope ratio monitoring by mass spectrometry (irm-MS) is limited. We have now developed a methodology that overcomes this deficit that exploits the power of isotopic quantitative (13)C nuclear magnetic resonance (NMR) spectrometry combined with chemical modification of the xanthines to enable the determination of positional intramolecular (13)C/(12)C ratios (δ(13)Ci) with high precision. However, only caffeine is amenable to analysis: theobromine and theophylline present substantial difficulties due to their poor solubility. However, their N-methylation to caffeine makes spectral acquisition feasible. The method is confirmed as robust, with good repeatability of the δ(13)Ci values in caffeine appropriate for isotope fractionation measurements at natural abundance. It is shown that there is negligible isotope fractionation during the chemical N-methylation procedure. Thus, the method preserves the original positional δ(13)Ci values. The method has been applied to measure the position-specific variation of the (13)C/(12)C distribution in caffeine. Not only is a clear difference between caffeine isolated from different sources observed, but theobromine from cocoa is found to show a (13)C pattern distinct from that of caffeine.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Xantinas/química , Metilação
14.
Environ Sci Technol ; 49(21): 12782-8, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26443423

RESUMO

Position-specific isotope effects (PSIEs) have been measured by isotope ratio monitoring (13)C nuclear magnetic resonance spectrometry during the evaporation of 10 liquids of different polarities under 4 evaporation modes (passive evaporation, air-vented evaporation, low pressure evaporation, distillation). The observed effects are used to assess the validity of the Craig-Gordon isotope model for organic liquids. For seven liquids the overall isotope effect (IE) includes a vapor-liquid contribution that is strongly position-specific in polar compounds but less so in apolar compounds and a diffusive IE that is not position-specific, except in the alcohols, ethanol and propan-1-ol. The diffusive IE is diminished under forced evaporation. The position-specific isotope pattern created by liquid-vapor IEs is manifest in five liquids, which have an air-side limitation for volatilization. For the alcohols, undefined processes in the liquid phase create additional PSIEs. Three other liquids with limitations on the liquid side have a lower, highly position-specific, bulk diffusive IE. It is concluded that evaporation of organic pollutants creates unique position-specific isotope patterns that may be used to assess the progress of remediation or natural attenuation of pollution and that the Craig-Gordon isotope model is valid for the volatilization of nonpolar organic liquids with air-side limitation of the volatilization rate.


Assuntos
Isótopos de Carbono/análise , Modelos Teóricos , Acetona/química , Isótopos de Carbono/química , Meio Ambiente , Gases , Heptanos/química , Hidrocarbonetos Bromados/química , Metanol/química , Éteres Metílicos/química , Modelos Químicos , Compostos Orgânicos/análise , Compostos Orgânicos/química , Pressão , Volatilização
15.
Anal Bioanal Chem ; 407(30): 9053-60, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26438472

RESUMO

The potential of wine (13)C isotope composition (δ(13)C) is presented to assess vine water status during grape ripening. Measurements of δ(13)C have been performed on a set of 32 authentic wines and their ethanol recovered after distillation. The data, obtained by isotope ratio monitoring by mass spectrometry coupled to an elemental analyser (irm-EA/MS), show a high correlation between δ(13)C of the bulk wine and its ethanol, indicating that the distillation step is not necessary when the wine has not been submitted to any oenological treatment. Therefore, the ethanol/wine δ(13)C correlation can be used as an indicator of possible enrichment of the grape must or the wine with exogenous organic compounds. Wine ethanol δ(13)C is correlated to predawn leaf water potential (R(2) = 0.69), indicating that this parameter can be used as an indicator of vine water status. Position-specific (13)C analysis (PSIA) of ethanol extracted from wine, performed by isotope ratio monitoring by nuclear magnetic resonance (irm-(13)C NMR), confirmed the non-homogenous repartition of (13)C on ethanol skeleton. It is the δ(13)C of the methylene group of ethanol, compared to the methyl moiety, which is the most correlated to predawn leaf water potential, indicating that a phase of photorespiration of the vine during water stress period is most probably occurring due to stomata closure. However, position-specific (13)C analysis by irm-(13)C NMR does not offer a greater precision in the assessment of vine water status compared to direct measurement of δ(13)C on bulk wine by irm-EA/MS.


Assuntos
Isótopos de Carbono/análise , Etanol/análise , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Vitis/química , Água/análise , Vinho/análise
16.
Proc Natl Acad Sci U S A ; 109(44): 18204-9, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23074255

RESUMO

The stable carbon isotope (13)C is used as a universal tracer in plant eco-physiology and studies of carbon exchange between vegetation and atmosphere. Photosynthesis fractionates against (13)CO(2) so that source sugars (photosynthates) are on average (13)C depleted by 20‰ compared with atmospheric CO(2). The carbon isotope distribution within sugars has been shown to be heterogeneous, with relatively (13)C-enriched and (13)C-depleted C-atom positions. The (13)C pattern within sugars is the cornerstone of (13)C distribution in plants, because all metabolites inherit the (13)C abundance in their specific precursor C-atom positions. However, the intramolecular isotope pattern in source leaf glucose and the isotope fractionation associated with key enzymes involved in sugar interconversions are currently unknown. To gain insight into these, we have analyzed the intramolecular isotope composition in source leaf transient starch, grain storage starch, and root storage sucrose and measured the site-specific isotope fractionation associated with the invertase (EC 3.2.1.26) and glucose isomerase (EC 5.3.1.5) reactions. When these data are integrated into a simple steady-state model of plant isotopic fluxes, the enzyme-dependent fractionations satisfactorily predict the observed intramolecular patterns. These results demonstrate that glucose and sucrose metabolism is the primary determinant of the (13)C abundance in source and sink tissue and is, therefore, of fundamental importance to the interpretation of plant isotopic signals.


Assuntos
Isótopos de Carbono/análise , Hexoses/química , Plantas/química , Cromatografia Líquida de Alta Pressão , Modelos Teóricos , Fotossíntese , Folhas de Planta/química
17.
Food Chem ; 422: 136251, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121209

RESUMO

Unsaturated fatty acid isomers and odd- and branched-chain fatty acids (OBCFAs) in milk triacylglycerols (TAGs) can be quantitated using gas chromatography (GC), providing access to biomarkers of animal species, breeds, diet, geographic origin, and environmental conditions. Such analysis requires expensive cyanopropyl siloxane or ionic liquid columns of at least 50 m in length, which increases the elution time. Aiming to use GC for cheese authentication and characterization while keeping the experiment time short and maintaining a good separation between fatty acid (FA) isomers, we considered using a 30 m polyethylene glycol-2-nitroterephthalate column. The FAs thus quantitated allowed the discovery of specific biomarkers for the origins of cheese varieties highly consumed in several countries. In addition, the simple and multivariate correlations we found between FAs in the cheese TAG matrix were alternative means for characterization and authentication purposes.


Assuntos
Queijo , Ácidos Graxos , Animais , Ácidos Graxos/análise , Triglicerídeos/análise , Queijo/análise , Cromatografia Gasosa/métodos , Ácidos Graxos Insaturados/análise , Leite/química
18.
Nat Prod Rep ; 29(4): 476-86, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22337171

RESUMO

This paper discusses the biochemical and physiological factors underlying the site-specific, non-random distribution of ¹³C/¹²C isotope ratios within plant metabolites, which can be determined by isotopic ¹³C NMR spectrometry. It focuses on the key metabolite glucose and on enzyme activities and physiological processes that are responsible for the carbon isotope patterns in glucose from different biological origins. It further considers how intramolecular ¹³C/¹²C isotope ratios in glucose can be exploited to understand fundamental aspects of plant biological chemistry, how these are related to environmental parameters and how these influence metabolites beyond central sugar metabolism. It does not purport to be an extensive overview of intramolecular isotopic patterns. Rather, the aim is to show how a full understanding of ¹³C/¹²C fractionations occurring during plant metabolism can only be possible once the factors that define intramolecular isotope values are better delineated.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Sacarose/química , Isótopos de Carbono/análise , Estrutura Molecular , Sacarose/análise
19.
Food Chem ; 383: 132434, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35183958

RESUMO

Food quality and safety are at the heart of consumers' concerns across the world. Dairy products, because of their large consumption, are fertile ground for fraudulent acts. This fact justifies the development of effective, accessible, and rapid analytical methods for their authentication. A high-resolution spectral treatment method previously developed by our team was applied to 1H NMR spectra of cheese triacylglycerols. 178 Peaks were thus quantitated and successfully used in the construction of multivariate models for the quantitation of individual fatty acids and for the classification of cheese samples according to the producing species, to their origin and variety. Besides, several peaks related to the amount and position of anteisopentadecanoic, butyric, α-linolenic, myristoleic, rumenic, and vaccenic acids were, among others, specific biomarkers of cheese groups. For the first time in 1H NMR, we were able to identify and to quantitate signals related to minor fatty acids within cheese triacylglycerols.


Assuntos
Queijo , Animais , Biomarcadores/análise , Queijo/análise , Ácidos Graxos/análise , Leite/química , Espectroscopia de Prótons por Ressonância Magnética , Triglicerídeos/química
20.
New Phytol ; 191(2): 579-588, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21388380

RESUMO

Recent developments in (13) C NMR spectrometry have allowed the determination of intramolecular (13) C/(12) C ratios with high precision. However, the analysis of carbohydrates requires their derivatization to constrain the anomeric carbon. Fructose has proved to be particularly problematic because of a byproduct occurring during derivatization and the complexity of the NMR spectrum of the derivative. Here, we describe a method to determine the intramolecular (13) C/(12) C ratios in fructose by (13) C NMR analysis of the acetyl-isopropylidene derivative. We have applied this method to measure the intramolecular (13) C/(12) C distribution in the fructosyl moiety of sucrose and have compared this with that in the glucosyl moiety. Three prominent features stand out. First, in sucrose from both C(3) and C(4) plants, the C-1 and C-2 positions of the glucosyl and fructosyl moieties are markedly different. Second, these positions in C(3) and C(4) plants show a similar profile. Third, the glucosyl and fructosyl moieties of sucrose from Crassulacean acid metabolism (CAM) metabolism have a different profile. These contrasting values can be interpreted as a result of the isotopic selectivity of enzymes that break or make covalent bonds in glucose metabolism, whereas the distinctive (13) C pattern in CAM sucrose probably indicates a substantial contribution of gluconeogenesis to glucose synthesis.


Assuntos
Ananas/química , Bebidas/análise , Frutose/análogos & derivados , Frutose/química , Espectroscopia de Ressonância Magnética/métodos , Métodos Analíticos de Preparação de Amostras , Isótopos de Carbono/análise , Glucose/análogos & derivados , Glucose/química , Espectroscopia de Ressonância Magnética/normas , Reprodutibilidade dos Testes , Sacarose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA