Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sports Sci ; 39(7): 815-825, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33191845

RESUMO

This study explores the cardiorespiratory and muscular fatigue responses to downhill (DR) vs uphill running (UR) at similar running speed or similar oxygen uptake (⩒O2). Eight well-trained, male, trail runners completed a maximal level incremental test and three 15-min treadmill running trials at ±15% slope: i) DR at ~6 km·h-1 and ~19% ⩒O2max (LDR); ii) UR at ~6 km·h-1 and ~70% ⩒O2max (HUR); iii) DR at ~19 km·h-1 and ~70% ⩒O2max (HDR). Cardiorespiratory responses and spatiotemporal gait parameters were measured continuously. Maximal isometric torque was assessed before and after each trial for hip and knee extensors and plantar flexor muscles. At similar speed (~6 km·h-1), cardiorespiratory responses were attenuated in LDR vs HUR with altered running kinematics (all p < 0.05). At similar ⩒O2 (~3 l·min-1), heart rate, pulmonary ventilation and breathing frequency were exacerbated in HDR vs HUR (p < 0.01), with reduced torque in knee (-15%) and hip (-11%) extensors and altered spatiotemporal gait parameters (all p < 0.01). Despite submaximal metabolic intensity (70% ⩒O2max), heart rate and respiratory frequency reached maximal values in HDR. These results further our understanding of the particular cardiorespiratory and muscular fatigue responses to DR and provide the bases for future DR training programs for trail runners.


Assuntos
Frequência Cardíaca/fisiologia , Fadiga Muscular/fisiologia , Consumo de Oxigênio/fisiologia , Corrida/fisiologia , Adulto , Fenômenos Biomecânicos/fisiologia , Teste de Esforço/métodos , Marcha/fisiologia , Humanos , Contração Isométrica/fisiologia , Masculino , Músculo Esquelético/fisiologia , Troca Gasosa Pulmonar/fisiologia , Ventilação Pulmonar/fisiologia , Taxa Respiratória/fisiologia , Fatores de Tempo , Torque
2.
Scand J Med Sci Sports ; 28(11): 2284-2292, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29969520

RESUMO

Interval aerobic training programs (IATP) improve cardiorespiratory and endurance parameters. They are, however, unsuitable to seniors as frequently associated with occurrence of exhaustion and muscle pain. The purpose of this study was to measure the benefits of an IATP designed with recovery bouts (IATP-R) in terms of cardiorespiratory and endurance parameters and its acceptability among seniors (≥70 years). Sedentary healthy volunteers were randomly assigned either to IATP-R or sedentary lifestyle. All participants performed an incremental cycle exercise and 6-minute walk test (6-MWT) at baseline and 9.5 weeks later. The first ventilatory threshold (VT1 ); maximal tolerated power (MTP); peak of oxygen uptake (VO2peak ); maximal heart rate (HRmax ); and distance walked at 6-MWT were thus measured. IATP-R consisted of 19 sessions of 30-minute (6 × 4-min at VT1  + 1-minute at 40% of VT1 ) cycling exercise over 9.5 weeks. With an adherence rate of 94.7% without any significant adverse events, 9.5 weeks of IATP-R, compared to controls, enhanced endurance (VT1 : +18.3 vs -4.6%; HR at baseline VT1 : -5.9 vs +0.2%) and cardiorespiratory parameters (VO2peak : +14.1 vs -2.7%; HRmax : +1.6 vs -1.7%; MTP: +19.2 vs -2.3%). The walk distance at the 6-MWT was also significantly lengthened (+11.6 vs. -3.1%). While these findings resulted from an interim analysis planned when 30 volunteers were enrolled in both groups, IATP-R appeared as effective, safe, and applicable among sedentary healthy seniors. These characteristics are decisive for exercise training prescription and adherence.


Assuntos
Aptidão Cardiorrespiratória , Exercício Físico/fisiologia , Resistência Física , Idoso , Idoso de 80 Anos ou mais , Feminino , Frequência Cardíaca , Humanos , Masculino , Consumo de Oxigênio , Estudos Prospectivos , Comportamento Sedentário , Teste de Caminhada
3.
Int J Sports Physiol Perform ; 17(3): 423-431, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853187

RESUMO

PURPOSE: This study aimed to determine the contribution of metabolic, cardiopulmonary, neuromuscular, and biomechanical factors to the energy cost (ECR) of graded running in well-trained runners. METHODS: Eight men who were well-trained trail runners (age: 29 [10] y, mean [SD]; maximum oxygen consumption: 68.0 [6.4] mL·min-1·kg-1) completed maximal isometric evaluations of lower limb extensor muscles and 3 randomized trials on a treadmill to determine their metabolic and cardiovascular responses and running gait kinematics during downhill (DR: -15% slope), level (0%), and uphill running (UR: 15%) performed at similar O2 uptake (approximately 60% maximum oxygen consumption). RESULTS: Despite similar O2 demand, ECR was lower in DR versus level running versus UR (2.5 [0.2] vs 3.6 [0.2] vs 7.9 [0.5] J·kg-1·m-1, respectively; all P < .001). Energy cost of running was correlated between DR and level running conditions only (r2 = .63; P = .018). Importantly, while ECR was correlated with heart rate, cardiac output, and arteriovenous O2 difference in UR (all r2 > .50; P < .05), ECR was correlated with lower limb vertical stiffness, ground contact time, stride length, and step frequency in DR (all r2 > .58; P < .05). Lower limb isometric extension torques were not related to ECR whatever the slope. CONCLUSION: The determining physiological factors of ECR might be slope specific, mainly metabolic and cardiovascular in UR versus mainly neuromuscular and mechanical in DR. This possible slope specificity of ECR during incline running opens the way for the implementation of differentiated physiological evaluations and training strategies to optimize performance in well-trained trail runners.


Assuntos
Teste de Esforço , Consumo de Oxigênio , Adulto , Atletas , Fenômenos Biomecânicos , Marcha/fisiologia , Humanos , Masculino , Consumo de Oxigênio/fisiologia
4.
J Sci Med Sport ; 24(1): 85-91, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32646746

RESUMO

OBJECTIVES: Recent studies investigated the determinants of trail running performance (i.e., combining uphill (UR) and downhill running sections (DR)), while the possible specific physiological factors specifically determining UR vs DR performances (i.e., isolating UR and DR) remain presently unknown. This study aims to determine the cardiorespiratory responses to outdoor DR vs UR time-trial and explore the determinants of DR and UR performance in highly trained runners. DESIGN: Randomized controlled trial. METHODS: Ten male highly-trained endurance athletes completed 5-km DR and UR time-trials (average grade: ±8%) and were tested for maximal oxygen uptake, lower limb extensor maximal strength, local muscle endurance, leg musculotendinous stiffness, vertical jump ability, explosivity/agility and sprint velocity. Predictors of DR and UR performance were investigated using correlation and commonality regression analyses. RESULTS: Running velocity was higher in DR vs UR time-trial (20.4±1.0 vs 12.0±0.5km·h-1, p<0.05) with similar average heart rate (95±2% vs 94±2% maximal heart rate; p>0.05) despite lower average V̇O2 (85±8% vs 89±7% V̇O2max; p<0.05). Velocity at V̇O2max (vV̇O2max) body mass index (BMI) and maximal extensor strength were significant predictors of UR performance (r2=0.94) whereas vV̇O2max, leg musculotendinous stiffness and maximal extensor strength were significant predictors of DR performance (r2=0.84). CONCLUSIONS: Five-km UR and DR running performances are both well explained by three independent predictors. If two predictors are shared between UR and DR performances (vV̇O2max and maximal strength), their relative contribution is different and, importantly, the third predictor appears very specific to the exercise modality (BMI for UR vs leg musculotendinous stiffness for DR).


Assuntos
Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia , Corrida/fisiologia , Adulto , Desempenho Atlético/fisiologia , Dióxido de Carbono/metabolismo , Elasticidade/fisiologia , Humanos , Ácido Láctico/sangue , Perna (Membro)/fisiologia , Masculino , Taxa Respiratória/fisiologia , Volume de Ventilação Pulmonar/fisiologia , Fatores de Tempo
5.
Med Sci Sports Exerc ; 53(6): 1294-1302, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33433150

RESUMO

PURPOSE: A decision tree based on a clinicophysiological score (severe high-altitude illness (SHAI) score) has been developed to detect subjects susceptible to SHAI. We aimed to validate this decision tree, to rationalize the prescription of acetazolamide (ACZ), and to specify the rule for a progressive acclimatization. METHODS: Data were obtained from 641 subjects in 15 European medical centers before and during a sojourn at high altitude. Depending on the value of the SHAI score, advice was given and ACZ was eventually prescribed. The outcome was the occurrence of SHAI at high altitude as a function of the SHAI score, ACZ prescription, and use and fulfillment of the acclimatization rule. RESULTS: The occurrence of SHAI was 22.6%, similar to what was observed 18 yr before (23.7%), whereas life-threatening forms of SHAI (high-altitude pulmonary and cerebral edema) were less frequent (2.6%-0.8%, P = 0.007). The negative predictive value of the decision tree based was 81%, suggesting that the procedure is efficient to detect subjects who will not suffer from SHAI, therefore limiting the use of ACZ. The maximal daily altitude gain that limits the occurrence of SHAI was established at 400 m. The occurrence of SHAI was reduced from 27% to 12% when the recommendations for ACZ use and 400-m daily altitude gain were respected (P < 0.001). CONCLUSIONS: This multicenter study confirmed the interest of the SHAI score in predicting the individual risk for SHAI. The conditions for an optimized acclimatization (400-m rule) were also specified, and we proposed a rational decision tree for the prescription of ACZ, adapted to each individual tolerance to hypoxia.


Assuntos
Acetazolamida/uso terapêutico , Doença da Altitude/diagnóstico , Doença da Altitude/prevenção & controle , Anticonvulsivantes/uso terapêutico , Árvores de Decisões , Aclimatação , Adulto , Feminino , Humanos , Masculino , Adesão à Medicação , Pessoa de Meia-Idade , Fatores de Risco
6.
Med Sci Sports Exerc ; 52(5): 1135-1143, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31815832

RESUMO

PURPOSE: The purpose of this study was twofold: (i) determine if well-trained athletes can achieve similar peak oxygen uptake (V˙O2peak) in downhill running (DR) versus level running (LR) or uphill running (UR) and (ii) investigate if lower limb extensor muscle strength is related to the velocity at V˙O2peak (vV˙O2peak) in DR, LR, and UR. METHODS: Eight athletes (V˙O2max = 68 ± 2 mL·min·kg) completed maximal incremental tests in LR, DR (-15% slope), and UR (+15% slope) on a treadmill (+1, +1.5, and +0.5 km·h every 2 min, respectively) while cardiorespiratory responses and spatiotemporal running parameters were continuously measured. They were also tested for maximal voluntary isometric strength of hip and knee extensors and plantar flexors. RESULTS: Oxygen uptake at maximal effort was approximately 16% to 18% lower in DR versus LR and UR (~57 ± 2 mL·min·kg, 68 ± 2 mL·min·kg, and 70 ± 3 mL·min·kg, respectively) despite much greater vV˙O2peak (22.7 ± 0.6 km·h vs 18.7 ± 0.5 km·h and 9.3 ± 0.3 km·h, respectively). At vV˙O2peak, longer stride length and shorter contact time occurred in DR versus LR and UR (+12%, +119%, -38%, and -61%, respectively). Contrary to knee extensor and plantar flexor, hip extensor isometric strength correlated to vV˙O2peak in DR, LR, and UR (r = -0.86 to -0.96, P < 0.05). At similar V˙O2, higher heart rate and ventilation emerged in DR versus LR and UR, associated with a more superficial ventilation pattern. CONCLUSIONS: This study demonstrates that well-trained endurance athletes, accustomed to DR, achieved lower V˙O2peak despite higher vV˙O2peak during DR versus LR or UR maximal incremental tests. The specific heart rate and ventilation responses in DR might originate from altered running gait and increased lower-limb musculotendinous mechanical loading, furthering our understanding of the particular physiology of DR, ultimately contributing to optimize trail race running performance.


Assuntos
Teste de Esforço/métodos , Extremidade Inferior/fisiologia , Força Muscular , Consumo de Oxigênio , Resistência Física/fisiologia , Corrida/fisiologia , Fenômenos Biomecânicos , Humanos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA