Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Microbiol ; 108: 104095, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36088111

RESUMO

Processing, such as fresh cutting and drying, is essential to enhance profitability; therefore, to limit waste and reduce losses in fruit production such as mangoes. Metabarcoding and microbial enumeration methods were utilized to explore the structure of mango microbiota, as well as their evolution after processing. Two mango ripening stages of cv. Cogshall were selected and processed into fresh-cut pieces or dried slices. Microbiological and physicochemical parameters were monitored during product storage, in order to assess the dynamics of quantitative and qualitative variations of the microbial flora. Proteobacteria was the dominant bacterial phylum of the mango surface and accounted for 73.16%, followed by Actinobacteria (10.16%), Bacteroidetes (7.82%) and Firmicutes (6.68%). Aureobasidium and Cladosporium were the only two genera shared between all types of samples (peel surface, dried slices and mango fresh-cut). However, the bacterial genera Lactobacillus and Pantoea were the most abundant in fresh-cut mango after 14 days of storage. Ascomycota was the dominant fungal phylum in the mango surface and accounted for 90.76% of the total number of detected sequences, followed by Basidiomycota (9.21%). In total, 866 microbial genera were associated with mango surface (562 bacterial and 304 fungal). Among detected yeast genera, Saccharomyces, Candida and Malassezia prevailed in mango flesh and were replaced by Wickerhamomyces after 14 days of storage. Alpha and beta diversity analyzes revealed differences in fungal and bacterial communities on fruit peel, in fresh-cut, dried slices, and during conservation (fresh-cut and dried slices). Mango processing (washing, peeling, cutting and drying) reduced the richness and the microbial diversity (bacterial and fungal) associated to the fruit, and drying limits the development of cultivable microorganisms during storage in comparison to fresh-cuts mangoes.


Assuntos
Mangifera , Micobioma , Bactérias/genética , Manipulação de Alimentos/métodos , Mangifera/química , Árvores
2.
J Food Sci Technol ; 59(8): 3139-3149, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35872716

RESUMO

Increasing consumer demand for foods with high nutritional quality, prolonged shelf life and low environmental impact of the package, is driving innovation towards the development of new packaging. Multifunctional food packaging films, biodegradable, heat-sealable and antimicrobial, were developed. A PLA coating layer incorporating either sodium benzoate, potassium sorbate, or a combination of them was deposited onto a poly(lactic) acid/poly(butylene adipate-co-terephthalate) substrate film. The effectiveness of the developed systems to preserve the quality of foods was tested in shelf-life experiments performed on shredded carrots and pineapple juice, selected as model processed raw foods. The best performance was observed for the active film containing potassium sorbate: microbial populations increased less rapidly and were 0.7-1.8 log CFU/g lower at the end of storage period in this film than in control packs. Of the two model foods, the pineapple juice was better preserved: after 7 days in active packaging, color change and microbial counts of juice were below that of control, observed after one day and after 3 days of storage respectively. Moreover, the incorporation of the active phases did not significantly affect the mechanical, barrier and optical properties of the films, opening new ways to prolong shelf-life of minimally processed foods. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05435-y.

3.
Crit Rev Food Sci Nutr ; 60(17): 2837-2855, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31547681

RESUMO

Fruit and vegetables are an important part of human diets and provide multiple health benefits. However, due to the short shelf-life of fresh and minimally-processed fruit and vegetables, significant losses occur throughout the food distribution chain. Shelf-life extension requires preserving both the quality and safety of food products. The quality of fruit and vegetables, either fresh or fresh-cut, depends on many factors and can be determined by analytical or sensory evaluation methods. Among the various technologies used to maintain the quality and increase shelf-life of fresh and minimally-processed fruit and vegetables, biological control is a promising approach. Biological control refers to postharvest control of pathogens using microbial cultures. With respect to application of biological control for increasing the shelf-life of food, the term biopreservation is favored, although the approach is identical. The methods for screening and development of biocontrol agents differ greatly according to their intended application, but the efficacy of all current approaches following scale-up to commercial conditions is recognized as insufficient. The combination of biological and physical methods to maintain quality has the potential to overcome the limitations of current approaches. This review compares biocontrol and biopreservation approaches, alone and in combination with physical methods. The recent increase in the use of meta-omics approaches and other innovative technologies, has led to the emergence of new strategies to increase the shelf-life of fruit and vegetables, which are also discussed herein.


Assuntos
Frutas , Verduras , Agentes de Controle Biológico , Conservação de Alimentos , Humanos
4.
Molecules ; 24(4)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813299

RESUMO

The aim of this study was to assess the effect of temperature, solvent (hydroethanolic mixtures) and pH on the recovery of individual phenolic compounds from "horchata" by-products. These parameters were optimized by response surface methodology and triple-TOF-LC-MS-MS was selected as the analytical tool to identify and quantify the individual compounds. The optimum extraction conditions were 50% ethanol, 35 °C and pH 2.5, which resulted in values of 222.6 mg gallic acid equivalents (GAE)/100 g dry matter and 1948.1 µM trolox equivalent (TE)/g of dry matter for total phenolic content (TPC) and trolox equivalent antioxidant capacity (TEAC), respectively. The extraction of phenolic compounds by the conventional solvent method with agitation was influenced by temperature (p = 0.0073), and more strongly, by the content of ethanol in the extraction solution (p = 0.0007) while the pH did not show a great impact (p = 0.7961). On the other hand, the extraction of phenolic acids was affected by temperature (p = 0.0003) and by ethanol amount (p < 0.0001) but not by the pH values (p = 0.53). In addition, the percentage of ethanol influenced notably the extraction of both 4-vinylphenol (p = 0.0002) and the hydroxycinnamic acids (p = 0.0039). Finally, the main individual phenolic extracted with hydroethanolic mixtures was 4-vinylphenol (303.3 µg/kg DW) followed by spinacetin3-O-glucosyl-(1→6)-glucoside (86.2 µg/kg DW) and sinensetin (77.8 µg/kg DW).


Assuntos
Antioxidantes/análise , Cyperus/química , Fenóis/análise , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Ácidos Cumáricos/isolamento & purificação , Flavonoides/isolamento & purificação , Concentração de Íons de Hidrogênio , Fenóis/química , Fenóis/isolamento & purificação , Extratos Vegetais/análise , Extratos Vegetais/química , Solventes , Espectrometria de Massas em Tandem , Temperatura
5.
Can J Microbiol ; 62(7): 550-61, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27197991

RESUMO

From 6 samples of tropically grown fruits and leaves, 10 lactic acid bacteria belonging Leuconostoc, Weissella, and Lactobacillus species were isolated and identified by 16S rRNA gene sequencing and (GTG)5 fingerprinting. Acidification kinetics determined from BHI broth cultures showed genus-related patterns. In particular, Weissella cibaria appeared to act as a potent acidifier. Tolerance of isolates to acid, oxidative, or salt stress was highly variable and strain dependent. Isolate S14 (Leuconostoc pseudomesenteroides) growth was not affected by the presence of 0.05% H2O2, while Lactobacillus spp. isolates (S17 and S29) were the most tolerant to pH 4.5. The growth of 4 isolates, S5 (Leuconostoc mesenteroides), S14 and S10 (Leuconostoc pseudomesenteroides), and S27 (W. cibaria), was not affected by 5% NaCl. Nutritional beneficial properties were examined through measurement of antioxidant activities of short-term fermented pineapple juice, such as LDL oxidation and polyphenol content, and through exopolysaccharide formation from sucrose. Two isolates, S14 and S27, increased the antioxidant capacity of pineapple juice. The robust capacity of W. cibaria and of Leuconostoc pseudomesenteroides for vegetable lactic fermentation aimed to ameliorate food nutritional and functional quality was highlighted.


Assuntos
Antioxidantes/metabolismo , Bactérias/metabolismo , Fermentação , Frutas/microbiologia , Ácido Láctico/metabolismo , Folhas de Planta/microbiologia , Adaptação Fisiológica , Brassica/microbiologia , Carica/microbiologia , Tecnologia de Alimentos , Peróxido de Hidrogênio , Lactobacillus/genética , Lactobacillus/metabolismo , Leuconostoc/metabolismo , Solanum lycopersicum/microbiologia , RNA Ribossômico 16S/genética , Estresse Fisiológico , Clima Tropical
6.
Food Microbiol ; 45(Pt A): 103-10, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25481066

RESUMO

Geobacillus stearothermophilus is the main thermophilic spore former involved in flat sour spoilage of canned foods. Three typing methods were tested and applied to differentiate strains at intra-species level: panC sequence analysis, REP-PCR and M13-PCR. panC gene was highly conserved within the studied strains, suggesting a low intra-specific diversity. This was supported by REP-PCR primary assays and M13-PCR results. M13-PCR profile analysis succeeded in differentiating six closely related groups (at 79% threshold similarity) among 127 strains from a range of spoiled canned food products and from different canneries. Phenotypic traits were investigated among 20 selected strains representing groups and origins. Ranges of growth under different temperatures (from 40 °C to 70 °C), pH (from 5.0 to 6.5), NaCl concentrations (from 1 to 5%) and sporulation conditions poorly differed between strains, but wet heat resistance of spores showed a 20-fold variation between strains. Furthermore, in this study, strains that belonged to the same M13-PCR genetic group did not share phenotypic characteristics or common origin. The work emphasizes a low diversity within the G. stearothermophilus species but data from this study may contribute to a better control of G. stearothermophilus spoilage in canned food.


Assuntos
Microbiologia de Alimentos , Alimentos em Conserva/microbiologia , Variação Genética , Geobacillus stearothermophilus/isolamento & purificação , Sequência de Bases , Análise por Conglomerados , Genótipo , Geobacillus stearothermophilus/classificação , Geobacillus stearothermophilus/genética , Geobacillus stearothermophilus/fisiologia , Temperatura Alta , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Fenótipo , Análise de Sequência de DNA , Cloreto de Sódio/farmacologia , Esporos Bacterianos
7.
Mol Nutr Food Res ; 67(11): e2200670, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36949666

RESUMO

SCOPE: Lactic acid fermentation (LAF) modulates the composition of food, leading to changes in safety, sensory, and nutritional properties. The effects of lactic fermented pineapple juice (FJ) supplementation on energetic metabolism of high-fat diet (HFD) fed mice are compared with either water (control), sweetened water (SW), bacteria in SW, and pineapple juice (J) supplementation. METHODS AND RESULTS: Drink consumption and body weight are measured during the 6 weeks of experiment, whereas glycemia and lipid content are determined at the beginning and at the end of the experiment. Total energy intake is similar between all groups though the volume of juice consumed is lower than that of SWs. Weight gain is higher for mice provided with sugary drinks (5.65 ± 1.32 to 7.74 ± 2.98 g) compared to water (4.68 ± 0.93 g). The FJ is less detrimental to blood carbohydrate regulation than other sugary drinks. Triglyceride (TG) and total cholesterol content are not modified following fermented juice or water consumption, contrarily to other sugary drinks. Whatever the drink, intestinal permeability is preserved. Lactic acid bacterium (LAB) population in feces is not affected by the beverage but species composition is modified. CONCLUSION: From a health perspective, FJ is preferable to other sugary drinks to limit metabolic disorders related to HFD.


Assuntos
Ananas , Doenças Metabólicas , Bebidas Adoçadas com Açúcar , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Bebidas , Água
8.
Foods ; 12(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37107496

RESUMO

This study investigated the effects of Lactiplantibacillus plantarum 75 (LAB 75) fermentation at 37 °C for 48 h on the pH, total soluble solids (TSS), colour, total titratable acidity (TTA), carotenoids, and bioactivities of cowpea leaf smoothies from three cultivars (VOP 1, VOP 3, and VOP 4). Fermentation reduced the pH from 6.57 to 5.05 after 48 h. The TTA increased with the fermentation period, whilst the TSS reduced. Fermentation of the smoothies resulted in the least colour changes (∆E) in VOP 1 after 48 h. Fermentation of cowpea smoothies (VOP 1, VOP 3, and VOP 4) improved the antioxidant capacity (FRAP, DPPH, and ABTS), which was attributed to the increase in total phenolic compounds and carotenoid constituents in all of the fermented cowpea smoothies. VOP 1 was further selected for analysis due to its high phenolic content and antioxidant activity. The VOP 1 smoothie fermented for 24 h showed the lowest reduction in TPC (11%) and had the highest antioxidant (FRAP, DPPH, and ABTS) activity. Ltp. plantarum 75 was viable and survived the harsh conditions of the gastrointestinal tract, and, hence, could be used as a probiotic. VOP 1 intestinal digesta showed significantly higher glucose uptake relative to the undigested and the gastric digesta, while the gastric phase had higher levels of α-amylase and α-glucosidase compared to the undigested samples.

9.
Food Microbiol ; 30(2): 438-47, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22365358

RESUMO

Although the viable but not culturable (VBNC) state has been studied in detail in bacteria, it has been suggested that maintenance of viability with loss of culturability also exists in eukaryotic cells, such as in the wine spoilage yeast Brettanomyces. To provide conclusive evidence for the existence of a VBNC state in this yeast, we investigated its capacity to become viable and nonculturable after sulfite stress, and its ability to recover culturability after stressor removal. Sulfite addition induced loss of culturability but maintenance of viability. Increasing the medium pH to decrease the concentration of toxic SO(2) allowed yeast cells to become culturable again, thus demonstrating the occurrence of a VBNC state in Brettanomyces upon SO(2) exposure. Relative to culturable Brettanomyces, VBNC yeast cells were found to display a 22% decrease in size on the basis of laser granulometry. Assays for 4-ethylguaiacol and 4-ethylphenol, volatile phenols produced by Brettanomyces, indicated that spoilage compound production could persist in VBNC cells. These morphological and physiological changes in VBNC Brettanomyces were coupled to extensive protein pattern modifications, as inferred by comparative two-dimensional electrophoresis and mass spectrometric analyses. Upon identification of 53 proteins out of the 168 spots whose abundance was significantly modified in treated cells relative to control, we propose that the SO(2)-induced VBNC state in Brettanomyces is characterized by a reduced glycolytic flux coupled to changes in redox homeostatis/protein turnover-related processes. This study points out the existence of common mechanisms between yeast and bacteria upon entry to the VBNC state.


Assuntos
Brettanomyces/isolamento & purificação , Vinho/microbiologia , Brettanomyces/crescimento & desenvolvimento , Brettanomyces/metabolismo , Meios de Cultura , Dióxido de Enxofre/farmacologia
10.
Biology (Basel) ; 11(2)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35205038

RESUMO

Various homopolysaccharides (HoPSs) can be produced by bacteria: α- and ß-glucans, ß-fructans and α-galactans, which are polymers of glucose, fructose and galactose, respectively. The synthesis of these compounds is catalyzed by glycosyltransferases (glycansucrases), which are able to transfer the monosaccharides in a specific substrate to the medium, which results in the growth of polysaccharide chains. The range of HoPS sizes is very large, from 104 to 109 Da, and mostly depends on the carbon source in the medium and the catalyzing enzyme. However, factors such as nitrogen nutrients, pH, water activity, temperature and duration of bacterial culture also impact the size and yield of production. The sequence of the enzyme influences the structure of the HoPS, by modulating the type of linkage between monomers, both for the linear chain and for the ramifications. HoPSs' size and structure have an effect on rheological properties of some foods by their influence on viscosity index. As a consequence, the control of structural and environmental factors opens ways to guide the production of specific HoPS in foods by bacteria, either by in situ or ex situ production, but requires a better knowledge of HoPS production conditions.

11.
Foods ; 11(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35267315

RESUMO

The effects of lactic acid fermentation using Lactiplantibacillus plantarum 75 (L75), Leuconostoc pseudomesenteroides 56 (L56) and its combination (L56 + 75) on the quality, bioactive and volatile compounds of mango juices (MJ) from three cultivars ('Peach', 'Sabre' and 'Tommy Atkins') were investigated. Fermented and unfermented MJ were evaluated for LAB growth, physicochemical parameters, volatile compounds, antioxidants activities (DPPH, ABTS, FRAP methods), total phenolic content (TPC) and sensory properties. The unfermented juices served as a control. Twenty-four-hour fermentation was ideal for MJ based on LAB growth profiles. Generally, titratable acidity, TPC, FRAP, DPPH and ABTS scavenging activities significantly increased with fermentation by the L75 strain and were highest in the L75-fermented 'Sabre' MJ, while L75-fermented 'Peach' MJ had higher ABTS activity (p < 0.05). In contrast, the L56 strain enhanced ß-carotene retention, with improved colour properties in L56-fermented 'Peach' MJ. Fermentation with L75 in 'Sabre' and 'Peach' MJ aided the synthesis of new volatile compounds (alcohols, esters, ketones and aldehydes). A PLS-DA scatter plot showed two clusters separating the 'Peach' and 'Sabre' mango juice fermented with L75 from the rest. Based on the variable importance of the projection value (VIP) scores, pentadecane, 8-hexyl and butyl isobutyrate were shown as marker candidates to distinguish 'Peach' and 'Sabre' MJ fermented with L75 from the other treatments, whereas ethyl octanoate and isobutyl acetate differentiated the 'Sabre' MJ fermented with L75 from the other treatments. 'Sabre' and 'Peach' MJ fermented with L75 and L56 could provide antioxidants, meeting the recommended daily requirements for ascorbic acid and carotenoids in adults and teenagers. Hence, lactic acid fermentation of these local cultivars is a way to benefit consumers.

12.
Foods ; 11(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36076887

RESUMO

The purpose of this study was to investigate the bioaccessibilities of total phenolic compounds, carotenoid profile, antioxidant activity, and Lactic acid bacteria (LAB) survival in fermented mango juice (MJs) obtained from three mango cultivars after exposure to an in vitro gastrointestinal digestion model. The MJs from three cultivars ('Sabre', 'Peach', and 'Tommy Atkins') were fermented using Lactiplantibacillus plantarum 75 (L75), Leuconostoc pseudomesenteroides 56 (L56), and their combination (L56 + 75). Fermented MJs were digested and fractions: gastric (GF), intestinal (IF), and dialysis (DF) were analyzed for total polyphenolic content (TPC), antioxidant activity (FRAP), 1-diphenyl-2-picrylhydrazyl (DPPH), and 2.2-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid (ABTS). In addition, the carotenoid content and the LAB population were determined from the GF and IF. After digestion, TPC decreased while fermentation improved its bioaccessibility. L75-fermented 'Sabre' MJs had the highest bioaccessible TPC in the GF (75.65%), IF (50.10%), and DF (32.52%) while L56 'Peach' MJs increased the ß-carotene bioaccessibility by 1.32-fold at GF and IF (1.21-fold). When compared to the other two juices, 'Sabre' and 'Peach' MJs fermented with L75 showed the highest IC50 values for DPPH and ABTS. Generally, L75-fermented 'Sabre' MJs had the highest LAB survival at both GF (7.57 Log CFU/mL) and IF (7.45 Log CFU/mL) and hold potential as probiotic juices. L56-fermented 'Sabre' MJs would ensure the delivery of four times the carotenoid recommended dietary allowance (RDA) to a target site in the body while L75-fermented 'Peach' MJs could be used to effectively counteract oxidants in the body system.

13.
Foods ; 11(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35885359

RESUMO

Biopolymeric systems that co-encapsulate probiotics and bioactive compounds ensure timely delivery in the gastrointestinal tract. Cyanidin 3-sambubioside is the dominant anthocyanin in Natal plum (Carissa macrocarpa). This study aims at the co-encapsulation of Natal plum (Carissa macrocarpa) juice inoculated with Lactiplantibacillus plantarum 75 (Ltp. plantarum 75) by freeze-drying using pea protein isolate, maltodextrin, and psyllium mucilage and evaluating their release in vitro. An encapsulation efficiency of >85% was noted in lactic acid bacteria (LAB) survival and anthocyanin content. Freeze-drying produced pinkish-red powder, rich in polyphenols and LAB (>6 Log CFU mL−1) after 14 days of storage. Natal plum juice + maltodextrin + pea protein isolate + psyllium mucilage + Ltp. plantarum 75 (NMPeaPsyB) showed the highest LAB population (6.74 Log CFU mL−1) with a survival rate of 81.9%. After digestion, NMPeaPsyB and NMPeaPsy had the highest LAB survival (>50%) at 67.5% and 67.5 ± 0.75%, respectively, and the highest bioaccessibility of cyanidin 3-sambubioside in Natal plum juice than the other co-encapsulation with other biopolymers. NMPeaPsy and NMPeaPsyB showed phenolic stability in the gastric phase and controlled release in the intestinal simulated phase. The antioxidant activities had strong correlations with cyanidin 3-sambubioside. The results confirmed that microencapsulation is important for improving stability and allowing for the development of functional foods.

14.
Microorganisms ; 9(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925727

RESUMO

Amongst the microbial diversity in the food chain, lactic acid bacteria (LAB) are in the front row for their positive roles [...].

15.
Front Nutr ; 8: 649189, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898502

RESUMO

In this study, popularly consumed traditional chayote leaves and locally produced pineapple fruit were used to develop a fermented smoothie using lactic acid bacteria (LAB) strains: Lactobacillus plantarum (L75), Weissella cibaria (W64), and their combination (LW64 + 75). The physicochemical parameters [pH, total soluble solids (TSS), and color], total phenols, and carotenoid contents of the smoothies fermented for 48 h and stored for 7 days at 4°C were compared with the unfermented (control) smoothies. Results indicated that LAB fermentation reduced the pH from 3.56 to 2.50 after 48 h (day 2) compared with the non-fermented smoothie at day 2 (pH 3.37). LAB strain L75 significantly reduced the TSS content of the smoothies to 13.06°Bx after 2 days of fermentation. Smoothies fermented by L75 showed overall acceptability after 7 days of storage compared with the non-fermented puree on day 0. The LW64 + 75 significantly reduced the color change (ΔE), which was similar to the control. L75 increased the phenolic content, and W64 enhanced the total carotenoid content of the smoothies after 2 days of fermentation compared with other treatments. The use of an in vitro model simulating gastrointestinal (GI) digestion showed that fermentation with L75 improved the total phenol recovery by 65.96% during the intestinal phase compared with the control. The dialysis phase mimicked an epithelial barrier, and 53.58% of the recovered free soluble are bioavailable from the L75 fermented smoothies compared with the control. The antioxidant capacity of dialyzable fraction of the L75 fermented smoothie was significantly higher than that of the control and smoothies fermented with W64 or LW64 + 75.

16.
Foods ; 10(5)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924943

RESUMO

This study describes the impact of utilising different strains of lactic acid bacteria (LAB) for the fermentation of papaya puree and their effect on the quality parameters and bioaccessibility of phenolic compounds during simulated in vitro gastrointestinal digestion. Papaya was processed into puree; pasteurised and fermented at 37 °C for 2 days; and stored for 7 days at 4 °C using LAB strains Lactiplantibacillus plantarum 75 (L75*D2; L75*D7), Weissella cibaria64 (W64*D2; W64*D7) and Leuconostoc pseudomesenteroides 56 (L56*D2; L56*D7), respectively. Non-fermented samples at 0 (PPD0), 2 (PPD2) and 7 days (PPD7) served as controls. pH was reduced with fermentation and was lowest in L56*D2 (3.03) and L75*D2 (3.16) after storage. The colour change (ΔE) increased with the fermentation and storage of purees; L75*D7 showed the highest ΔE (13.8), and its sourness reduced with storage. The fermentation by W64*D7 and L75*D7 increased the % recovery of chlorogenic, vanillic, syringic, ellagic, ferulic acids, catechin, epicatechin and quercetin in the intestinal fraction compared to the L56*D7 and PPD7. Fermentation by W64*D7 and L75*D7 significantly improved the antioxidant capacity of the dialysed fraction compared to the L56*D7 or PPD7. L56*D7-fermented papaya puree showed the highest inhibitory effect of α-glucosidase activity followed by L75*D7. L75*D7 had a significantly higher survival rate. LAB fermentation affected the bioacessibilities of phenolics and was strain dependent. This study recommends the use of Lpb. plantarum 75 for fermenting papaya puree.

17.
Appl Microbiol Biotechnol ; 88(4): 925-37, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20730535

RESUMO

Brettanomyces is the major microbial cause for wine spoilage worldwide and causes significant economic losses. Like Saccharomyces cerevisiae, it is well adapted to winemaking, but molecular pathways involved in this acclimatization are still unknown. In this work, we report a time-scale comparison between the two yeasts coping with alcoholic fermentation. Orthologs of some well-characterized stress genes of S. cerevisiae were searched by sequence alignment in the Dekkera/Brettanomyces partial genome; nine genes were finally selected on the basis on their similarity and involvement in adaptation to wine. Transcript analysis during a model grape juice fermentation indicates that a subset of genes (i.e., ATP1, ERG6, VPS34) shows peculiar expression patterns in Brettanomyces bruxellensis but also that some common regulations of stress response exist between the two yeasts, although with different timing (i.e., for MSN4, SNF1, HSP82, NTH1). This suggests that B. bruxellensis efficient survival in such challenging conditions is due to mechanisms unique to it, together with a conserved yeast stress response. This study, although limited by the poor genetic data available on B. bruxellensis, provides first insights into its gene expression remodeling in winemaking and opens new frames for further investigations.


Assuntos
Brettanomyces/metabolismo , Microbiologia de Alimentos , Estresse Fisiológico , Vinho/microbiologia , Aclimatação , Brettanomyces/genética , Dekkera/metabolismo , Fermentação , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Fatores de Tempo
18.
Microorganisms ; 8(9)2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32872680

RESUMO

This study aimed to investigate the influences of fermentation at 37 °C for 3 days by different lactic acid bacterium strains, Lactobacillus plantarum (17a), Weissella cibaria (21), Leuconostoc pseudomesenteroides (56), W. cibaria (64) or L. plantarum (75), on color, pH, total soluble solids (TSS), phenolic compounds and antioxidant activity of African nightshade (leaves). Results indicated fermentation with L. plantarum 75 strain significantly decreased the pH and total soluble solids, and increased the concentration of ascorbic acid after 3 days. L. plantarum 75 strain limited the color modification in fermented nightshade leaves and increased the total polyphenol content and the antioxidant activity compared to the raw nightshade leaves. Overall, L. plantarum75 enhanced the functional potential of nightshade leaves and improved the bioavailability of gallic, vanillic acid, coumaric, ferulic ellagic acids, flavonoids (catechin, quercetin and luteolin) and ascorbic acid compared to the other lactic acid bacterium strains. Correlation analysis indicated that vanillic acid and p-coumaric acid were responsible for the increased antioxidant activity. Proximate analysis of the fermented nightshade leaves showed reduced carbohydrate content and low calculated energy.

19.
Front Nutr ; 7: 576532, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304915

RESUMO

Underutilized or traditional leafy vegetables are grown in the wild and cultivated. They are consumed as nutritional accompaniments to staples, either raw (fresh), cooked, or in a dried form, through custom, habit, and tradition. These traditional leafy vegetables are natural rich sources of phytochemicals and nutritional compounds. Over time, the keenness for consumption of traditional vegetables has become less popular. Poor nutrient diets are the main cause of mortality and morbidity, especially in developing countries, where the problem is predominant due to poverty. Consumption of traditional vegetables can assist in the prevention of chronic disease development, as they contain various bioactive compounds that exhibit multiple health benefits. Traditional leafy vegetables play a vital role in combatting hunger, food insecurity, and malnutrition, and most are suitable for food intervention programs. African nightshade (Solanum family) is one such commonly consumed traditional leafy vegetable. During dry seasons, communities often face shortages of vegetables; thus, the preservation of edible leaves is one strategy to help overcome this problem. The adoption of solar drying and fermentation are traditional methods to extend the availability of African nightshade vegetables. Additionally, the agronomy practices and postharvest processing methods affect the phytochemicals and nutritional compounds of African nightshade accessions. This mini-review provides information on changes in phytochemicals, nutrition, and antinutritive compounds with different postharvest processing methods and irrigation. The review provides the justification to promote the cultivation for consumption, by identifying the potential African nightshade accessions that are rich in phytonutritional compounds. This mini-review summarizes and discusses the major information on (i) the micro- and macronutrients present in Solanum retroflexum, the most commonly consumed nightshade species compared with other traditional vegetables in Southern Africa, (ii) the composition of phytochemical compounds present in different nightshade accessions, (iii) the impact of irrigation on phytochemical composition in different nightshade species, and (iv) the impact of postharvest processing on phytochemicals and antinutritive compounds in S. retroflexum. Inclusion of African nightshade, especially S. retroflexum, with the main staple foods can improve protein, iron, and calcium levels in daily diets, which will help to improve people's health and well-being.

20.
Food Chem ; 325: 126805, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32387944

RESUMO

Not much information is available on the changes of phenolic metabolites or anti-nutritive compounds in African nightshade leaves during moist cooking. Blanching methods (boiling, microwave, and steaming) using 5-20% lemon juice was compared with the plain water as a control. Lemon juice at 20% significantly increased the total colour differences (ΔE). Chlorophyll content and the overall acceptance were highest for samples steamed in 5% lemon juice. Steam blanching in plain water reduced the tannin, oxalate and phytate contents but showed higher comparative peak responses for steroidal saponins. Neochlorogenic, chlorogenic, and caffeoylmalic acid, kaempferol O-rhamnosyl hexoside, and rutin were identified blanched leaves. Principle component analysis (PCA) discriminated between blanching treatments while Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) showed clear group distinctions between the blanching treatments. Chlorogenic acid, neochlorogenic acid and cryptochlorogenic acid were the responsible biomarkers for the separation of the steam blanching treatments. Thus, steam blanching preserves the functional compounds in nightshade leaves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA