Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 32(10): 18161-18174, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858979

RESUMO

As an alternative solution to surpass electronic neural networks, optical neural networks (ONNs) offer significant advantages in terms of energy consumption and computing speed. Despite the optical hardware platform could provide an efficient approach to realizing neural network algorithms than traditional hardware, the lack of optical nonlinearity limits the development of ONNs. Here, we proposed and experimentally demonstrated an all-optical nonlinear activator based on the stimulated Brillouin scattering (SBS). Utilizing the exceptional carrier dynamics of SBS, our activator supports two types of nonlinear functions, saturable absorption and rectified linear unit (Relu) models. Moreover, the proposed activator exhibits large dynamic response bandwidth (∼11.24 GHz), low nonlinear threshold (∼2.29 mW), high stability, and wavelength division multiplexing identities. These features have potential advantages for the physical realization of optical nonlinearities. As a proof of concept, we verify the performance of the proposed activator as an ONN nonlinear mapping unit via numerical simulations. Simulation shows that our approach achieves comparable performance to the activation functions commonly used in computers. The proposed approach provides support for the realization of all-optical neural networks.

2.
Small ; 16(46): e2004234, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33107207

RESUMO

3D incident light confinement by radical electromagnetic fields offers a facile and novel way to break through the performance limit of inorganic perovskite CsPbBr3 quantum dots (QDs). Herein, metallic nanoparticles decorated anodic aluminum oxide (AAO) hybrid plasmonic nanostructures with geometric control are first proposed for cyclic light utilization of perovskite photodetectors, enabled by spatially extended light confinement. The drastic multiple interference induced by plasmonic coupling within AAO matrixes are generated as a function of pore sizes, which can effectively collect the transmitted photons back to the surface. In addition, the self-assembled metallic nanoparticles simultaneously concentrate the incident and reflected light beams into the CsPbBr3 QD layers. The light confinement inherently stems from the metallic nanoparticles due to the variation of the near surface electromagnetic fields. As a result, perovskite photodetectors based on Al nanoparticles/AAO hybrid plasmonic nanostructures with a pore size of 220 nm exhibit enhanced photoresponse behavior with remarkably increased photocurrent by ≈43× and maintain low dark current under 490 nm light illumination at 1 V.

3.
ACS Appl Mater Interfaces ; 16(26): 32887-32905, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904545

RESUMO

Hydrogel bioelectronics has been widely used in wearable sensors, electronic skin, human-machine interfaces, and implantable tissue-electrode interfaces, providing great convenience for human health, safety, and education. The generation of electronic waste from bioelectronic devices jeopardizes human health and the natural environment. The development of degradable and recyclable hydrogels is recognized as a paradigm for realizing the next generation of environmentally friendly and sustainable bioelectronics. This review first summarizes the wide range of applications for bioelectronics, including wearable and implantable devices. Then, the employment of natural and synthetic polymers in hydrogel bioelectronics is discussed in terms of degradability and recyclability. Finally, this work provides constructive thoughts and perspectives on the current challenges toward hydrogel bioelectronics, providing valuable insights and guidance for the future evolution of sustainable hydrogel bioelectronics.


Assuntos
Hidrogéis , Dispositivos Eletrônicos Vestíveis , Hidrogéis/química , Humanos , Materiais Biocompatíveis/química , Polímeros/química , Eletrônica
4.
Small Methods ; 8(2): e2300223, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37330642

RESUMO

Perovskite solar cells (PSCs) have shown rapid development recently, whereas nonideal stability remains the chief obstacle toward commercialization. Thus, it is of utmost importance to probe the degradation pathway for the entire device. Here, the extrinsic stability of inverted PSCs (IPSCs) is investigated by using standard shelf-life testing based on the International Summit on Organic Photovoltaic Stability protocols (ISOS-D-1). During the long-term assessment of 1700 h, the degraded power conversion efficiency is mainly caused by the fill factor (53% retention) and short-circuit current density (71% retention), while the open-circuit voltage still maintains 97% of the initial values. Further absorbance evolution and density functional theory calculations disclose that the perovskite rear-contact side, in particular for the perovskite/fullerene interface, is the predominant degradation pathway. This study contributes to understanding the aging mechanism and enhancing the durability of IPSCs for future applications.

5.
ACS Nano ; 16(5): 7116-7143, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35511058

RESUMO

Reliable and efficient continuous-wave (CW) lasers have been intensively pursued in the field of optoelectronic integrated circuits. Metal perovskites have emerged as promising gain materials for solution-processed laser diodes. Recently, the performance of CW perovskite lasers has been improved with the optimization of material and device levels. Nevertheless, the realization of CW pumped perovskite lasers is still hampered by thermal runaway, unwanted parasitic species, and poor long-term stability. This review starts with the charge carrier recombination dynamics and fundamentals of CW lasing in perovskites. We examine the potential strategies that can be used to improve the performance of perovskite CW lasers from the materials to device levels. We also propose the open challenges and future opportunities in developing high-performance and stable CW pumped perovskite lasers.

6.
ACS Appl Mater Interfaces ; 14(6): 8243-8250, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35104399

RESUMO

Two-dimensional (2D) molybdenum disulfide (MoS2) has emerged as a prospective candidate for photodetection. However, due to the surface defects formed during the synthesis, the low photoresponse of 2D MoS2 photodetectors restricts its practical applications. Here, we developed a hybrid plasmonic structure that integrates MXene nanoparticles (MNPs) and 2D MoS2. With the introduction of MNPs, light waves are concentrated on MoS2 nanosheets via a strong localized surface plasmon resonance. Consequently, MNPs-decorated MoS2 photodetectors exhibit an improved photoresponse, including a higher responsivity (20.67 A/W), a larger detectivity of 5.39 × 1012 Jones, and a maximum external quantum efficiency of over 5000%. A 150-fold enhanced detectivity (2.33 × 1012 Jones) was achieved under 635 nm light illumination in the optimized device. These results provide an alternative approach for improving the photoresponse of MoS2 photodetectors.

7.
ACS Appl Mater Interfaces ; 12(50): 56126-56134, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33241683

RESUMO

CdSe single crystals (SCs), with a relatively high atomic number, large X-ray absorption coefficients, and high carrier mobility, are expected to provide high-performance detection for X-ray. However, the difficulty of growing high-quality CdSe SC has severely limited its application in X-ray detection. In this work, we develop an unconstrained physical gas phase method and in situ annealing process to grow high-quality CdSe SCs under unconstrained conditions. Using this method, CdSe SCs exhibit natural exposure planes, ultrahigh resistivity of 5.43 × 1012 to 1.29 × 1013 Ω cm and high µτ product of 1.3 × 10-2 to 1.5 × 10-2 cm2 V-1. It is also observed that CdSe SC X-ray detectors exhibit a record sensitivity of 2.08 × 105 µC Gyair-1 cm-2 and a low detection limit of 85 nGyair s-1, which are both desired in medical diagnostics. Moreover, those devices with different crystal directions provide anisotropic X-ray detection performance. Our findings pave a new avenue to exploit high-performance CdSe SC X-ray detectors.

8.
Adv Mater ; 32(22): e2000004, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32319160

RESUMO

Flexible devices are garnering substantial interest owing to their potential for wearable and portable applications. Here, flexible and self-powered photodetector arrays based on all-inorganic perovskite quantum dots (QDs) are reported. CsBr/KBr-mediated CsPbBr3 QDs possess improved surface morphology and crystallinity with reduced defect densities, in comparison with the pristine ones. Systematic material characterizations reveal enhanced carrier transport, photoluminescence efficiency, and carrier lifetime of the CsBr/KBr-mediated CsPbBr3 QDs. Flexible photodetector arrays fabricated with an optimum CsBr/KBr treatment demonstrate a high open-circuit voltage of 1.3 V, responsivity of 10.1 A W-1 , specific detectivity of 9.35 × 1013 Jones, and on/off ratio up to ≈104 . Particularly, such performance is achieved under the self-powered operation mode. Furthermore, outstanding flexibility and electrical stability with negligible degradation after 1600 bending cycles (up to 60°) are demonstrated. More importantly, the flexible detector arrays exhibit uniform photoresponse distribution, which is of much significance for practical imaging systems, and thus promotes the practical deployment of perovskite products.

9.
ACS Appl Mater Interfaces ; 12(48): 53973-53983, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33200937

RESUMO

Interface engineering is imperative to boost the extraction capability in perovskite solar cells (PSCs). We propose a promising approach to enhance the electron mobility and charge transfer ability of tin oxide (SnO2) electron transport layer (ETL) by introducing a two-dimensional carbide (MXene) with strong interface interaction. The MXene-modified SnO2 ETL also offers a preferable growth platform for perovskite films with reduced trap density. Through a spatially resolved imaging technique, profoundly reduced non-radiative recombination and charge transport losses in PSCs based on MXene-modified SnO2 are also observed. As a result, the PSC achieves an enhanced efficiency of 20.65% with ultralow saturated current density and negligible hysteresis. We provide an in-depth mechanistic understanding of MXene interface engineering, offering an alternative approach to obtain efficient PSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA