Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur Heart J ; 45(4): 287-305, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-37992083

RESUMO

BACKGROUND AND AIMS: Stanford type A aortic dissection (AD) is a degenerative aortic remodelling disease marked by an exceedingly high mortality without effective pharmacologic therapies. Smooth muscle cells (SMCs) lining tunica media adopt a range of states, and their transformation from contractile to synthetic phenotypes fundamentally triggers AD. However, the underlying pathomechanisms governing this population shift and subsequent AD, particularly at distinct disease temporal stages, remain elusive. METHODS: Ascending aortas from nine patients undergoing ascending aorta replacement and five individuals undergoing heart transplantation were subjected to single-cell RNA sequencing. The pathogenic targets governing the phenotypic switch of SMCs were identified by trajectory inference, functional scoring, single-cell regulatory network inference and clustering, regulon, and interactome analyses and confirmed using human ascending aortas, primary SMCs, and a ß-aminopropionitrile monofumarate-induced AD model. RESULTS: The transcriptional profiles of 93 397 cells revealed a dynamic temporal-specific phenotypic transition and marked elevation of the activator protein-1 (AP-1) complex, actively enabling synthetic SMC expansion. Mechanistically, tumour necrosis factor signalling enhanced AP-1 transcriptional activity by dampening mitochondrial oxidative phosphorylation (OXPHOS). Targeting this axis with the OXPHOS enhancer coenzyme Q10 or AP-1-specific inhibitor T-5224 impedes phenotypic transition and aortic degeneration while improving survival by 42.88% (58.3%-83.3% for coenzyme Q10 treatment), 150.15% (33.3%-83.3% for 2-week T-5224), and 175.38% (33.3%-91.7% for 3-week T-5224) in the ß-aminopropionitrile monofumarate-induced AD model. CONCLUSIONS: This cross-sectional compendium of cellular atlas of human ascending aortas during AD progression provides previously unappreciated insights into a transcriptional programme permitting aortic degeneration, highlighting a translational proof of concept for an anti-remodelling intervention as an attractive strategy to manage temporal-specific AD by modulating the tumour necrosis factor-OXPHOS-AP-1 axis.


Assuntos
Doenças da Aorta , Dissecção Aórtica , Benzofenonas , Isoxazóis , Doenças Vasculares , Humanos , Fator de Transcrição AP-1 , Aminopropionitrilo , Estudos Transversais , Dissecção Aórtica/genética , Doenças da Aorta/patologia , Doenças Vasculares/patologia , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/fisiologia , Fatores de Necrose Tumoral
2.
J Transl Med ; 22(1): 169, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368407

RESUMO

BACKGROUND: Adenomatous polyps (APs) with inflammation are risk factors for colorectal cancer. However, the role of inflammation-related gut microbiota in promoting the progression of APs is unknown. METHODS: Sequencing of the 16S rRNA gene was conducted to identify characteristic bacteria in AP tissues and normal mucosa. Then, the roles of inflammation-related bacteria were clarified by Spearman correlation analysis. Furthermore, colorectal HT-29 cells, normal colon NCM460 cells, and azoxymethane-treated mice were used to investigate the effects of the characteristic bacteria on progression of APs. RESULTS: The expression levels of inflammation-related markers (diamine oxidase, D-lactate, C-reactive protein, tumor necrosis factor-α, interleukin-6 and interleukin-1ß) were increased, whereas the expression levels of anti-inflammatory factors (interleukin-4 and interleukin-10) were significantly decreased in AP patients as compared to healthy controls. Solobacterium moorei (S. moorei) was enriched in AP tissues and fecal samples, and significantly positively correlated with serum inflammation-related markers. In vitro, S. moorei preferentially attached to HT-29 cells and stimulated cell proliferation and production of pro-inflammatory factors. In vivo, the incidence of intestinal dysplasia was significantly increased in the S. moorei group. Gavage of mice with S. moorei upregulated production of pro-inflammatory factors, suppressed proliferation of CD4+ and CD8+cells, and disrupted the integrity of the intestinal barrier, thereby accelerating progression of APs. CONCLUSIONS: S. moorei accelerated the progression of AP in mice via activation of the NF-κB signaling pathway, chronic low-grade inflammation, and intestinal barrier disruption. Targeted reduction of S. moorei presents a potential strategy to prevent the progression of APs.


Assuntos
Pólipos Adenomatosos , Firmicutes , Humanos , Animais , Camundongos , RNA Ribossômico 16S/genética , Inflamação/complicações , Pólipos Adenomatosos/complicações
3.
J Org Chem ; 89(12): 8357-8362, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38819110

RESUMO

Oxidation contributes as a secondary driver of the prevailing carbon emission in the chemical industries. To address this issue, photocatalytic aerobic oxidation has emerged as a promising alternative. However, the challenge of achieving satisfactory chemoselectivity and effective use of solar light has hindered progress in this area. In this context, the present study introduces a novel homogeneous photocatalyst, [Sm6O(OH)8(H2O)24]I8(H2O)8 cluster (Sm-OC), via a unique auxiliary ligand-free oxidative hydrolysis. Using Sm-OC as catalyst, a solar photocatalyzed aerobic oxidation of thiols has been developed for the synthesis of valuable disulfides. Remarkably, this catalyst manifested a significant turnover number ≥2000 under tested conditions. Sm-OC-catalyzed aerobic oxidation showcased remarkable chemoselectivity. In thiol oxidations, despite the vulnerability of disulfides toward overoxidation, overoxidized byproducts or oxidation of nontarget functional groups was not detected across all 28 tested substrates. This investigation presents the first application of a lanthanide-oxo/hydroxy cluster in photocatalysis.

4.
Environ Sci Technol ; 58(2): 1211-1222, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38173352

RESUMO

Molybdenum disulfide (nano-MoS2) nanomaterials have shown great potential for biomedical and catalytic applications due to their unique enzyme-mimicking properties. However, their potential agricultural applications have been largely unexplored. A key factor prior to the application of nano-MoS2 in agriculture is understanding its behavior in a complex soil-plant system, particularly in terms of its transformation. Here, we investigate the distribution and transformation of two types of nano-MoS2 (MoS2 nanoparticles and MoS2 nanosheets) in a soil-soybean system through a combination of synchrotron radiation-based X-ray absorption near-edge spectroscopy (XANES) and single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS). We found that MoS2 nanoparticles (NPs) transform dynamically in soil and plant tissues, releasing molybdenum (Mo) and sulfur (S) that can be incorporated gradually into the key enzymes involved in nitrogen metabolism and the antioxidant system, while the rest remain intact and act as nanozymes. Notably, there is 247.9 mg/kg of organic Mo in the nodule, while there is only 49.9 mg/kg of MoS2 NPs. This study demonstrates that it is the transformation that leads to the multifunctionality of MoS2, which can improve the biological nitrogen fixation (BNF) and growth. Therefore, MoS2 NPs enable a 30% increase in yield compared to the traditional molybdenum fertilizer (Na2MoO4). Excessive transformation of MoS2 nanosheets (NS) leads to the overaccumulation of Mo and sulfate in the plant, which damages the nodule function and yield. The study highlights the importance of understanding the transformation of nanomaterials for agricultural applications in future studies.


Assuntos
Nanoestruturas , Solo , Solo/química , Glycine max , Molibdênio , Agricultura
5.
J Dairy Sci ; 107(6): 3502-3514, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38246547

RESUMO

Microencapsulated enzymes have been found to effectively accelerate cheese ripening. However, microencapsulated enzyme release is difficult to control, often resulting in enzyme release during cheese processing and causing texture and flavor defects. This study aims to address this issue by developing aminopeptidase-loaded pH-responsive chitosan microspheres (A-CM) for precise enzyme release during cheese ripening. An aminopeptidase with an isoelectric point (pH 5.4) close to the pH value of cheese ripening was loaded on chitosan microspheres through electrostatic interaction. Turbidity titration measurements revealed that pH 6.5 was optimal for binding aminopeptidase and microspheres, affording the highest loading efficiency of 58.16%. Various characterization techniques, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy confirmed the successful loading of aminopeptidase molecules on the chitosan microspheres. In vitro release experiments conducted during simulated cheese production demonstrated that aminopeptidase release from A-CM was pH responsive. The microspheres retained the enzyme during the coagulation and cheddaring processes (pH 5.5-6.5) and only released it after entering the cheese-ripening stage (pH 5.0-5.5). By loading aminopeptidase on chitosan microspheres, the loss rate of the enzyme in cheese whey was reduced by approximately 79%. Furthermore, compared with cheese without aminopeptidase and cheese with aminopeptidase added directly, the cheeses made with A-CM exhibited the highest proteolysis level and received superior sensory ratings for taste and smell. The content of key aroma substances, such as 2/3-methylbutanal and ethyl butyrate, in cheese with A-CM was more than 15 times higher than the others. This study provides an approach for accelerating cheese ripening through the use of microencapsulated enzymes.


Assuntos
Aminopeptidases , Queijo , Quitosana , Microesferas , Quitosana/química , Concentração de Íons de Hidrogênio , Aminopeptidases/metabolismo , Animais , Manipulação de Alimentos
6.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542450

RESUMO

Lung aging triggers the onset of various chronic lung diseases, with alveolar repair being a key focus for alleviating pulmonary conditions. The regeneration of epithelial structures, particularly the differentiation from type II alveolar epithelial (AT2) cells to type I alveolar epithelial (AT1) cells, serves as a prominent indicator of alveolar repair. Nonetheless, the precise role of aging in impeding alveolar regeneration and its underlying mechanism remain to be fully elucidated. Our study employed histological methods to examine lung aging effects on structural integrity and pathology. Lung aging led to alveolar collapse, disrupted epithelial structures, and inflammation. Additionally, a relative quantification analysis revealed age-related decline in AT1 and AT2 cells, along with reduced proliferation and differentiation capacities of AT2 cells. To elucidate the mechanisms underlying AT2 cell functional decline, we employed transcriptomic techniques and revealed a correlation between inflammatory factors and genes regulating proliferation and differentiation. Furthermore, a D-galactose-induced senescence model in A549 cells corroborated our omics experiments and confirmed inflammation-induced cell cycle arrest and a >30% reduction in proliferation/differentiation. Physiological aging-induced chronic inflammation impairs AT2 cell functions, hindering tissue repair and promoting lung disease progression. This study offers novel insights into chronic inflammation's impact on stem cell-mediated alveolar regeneration.


Assuntos
Células Epiteliais Alveolares , Pulmão , Humanos , Células Epiteliais Alveolares/metabolismo , Células Cultivadas , Pulmão/metabolismo , Diferenciação Celular/fisiologia , Inflamação/metabolismo
7.
Eur J Immunol ; 52(6): 856-868, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35362153

RESUMO

The intestinal mucosal barrier is critical for the absorption of nutrients and the health of both humans and animals. Recent publications from clinical and experimental studies have shown the importance of the nutrients-bacteria-host interaction for the intestinal homeostasis. Dysfunction of these interactions has been reported to be associated with metabolic disorders and development of intestinal diseases such as the irritable bowel syndrome and inflammatory bowel diseases. Tryptophan and its metabolites, including kynurenine, kynurenic acid, and 5-hydroxytrptamine, can influence the proliferation of enterocytes, intestinal integrity, and immune response, as well as intestinal microbiota, therefore, regulating and contributing to the intestinal health. In this review, we highlight recent findings on the effect of tryptophan and its metabolites on the mucosal barrier and intestinal homeostasis and its regulation of innate immune response. Moreover, we present the signaling pathways related to Trp metabolism, such as mammalian target of rapamycin, aryl hydrocarbon receptor, and pregnane X receptor, which contribute to the intestinal homeostasis and discuss future perspectives on spontaneous interference in host tryptophan metabolism as potential clinical strategies of intestinal diseases.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Imunidade Inata , Mucosa Intestinal/metabolismo , Intestinos , Mamíferos , Triptofano/metabolismo
8.
Small ; 19(4): e2205260, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36424174

RESUMO

Thrombotic diseases have a high rate of mortality and disability, and pose a serious threat to global public health. Currently, most thrombolytic drugs especially protein drugs have a short blood-circulation time, resulting in low thrombolytic efficiency. Therefore, a platelet membrane (Pm) cloaked nanotube (NT-RGD/Pm) biomimetic delivery system with enhanced thrombolytic efficiency is designed. Nanotubes (NT) with an excellent clot-penetration properties are used to load a protein thrombolytic drug urokinase (Uk). Platelet-targeting arginine glycine-aspartic peptide (RGD) is grafted onto the surface of the nanotubes (NT-RGD) prior to cloaking. Multiple particle tracking (MPT) technique and confocal laser scanning microscope (CLSM) analysis are applied and the results show that the nanotubes possess a strong penetration and diffusion capacity in thrombus clots. After the Pm cloaking on NT-RGD/Uk, it shows a thrombus microenvironmental responsive release property and the half-life of Uk is six times longer than that of free Uk. Most importantly, NT-RGD-Uk/Pm exhibits a 60% thrombolytic efficiency in the FeCl3 -induced thrombosis mouse model, and it is able to significantly reduce the bleeding side effects of Uk. This Pm-cloaked nanotube system is an effective and promising platform for the controlled and targeted delivery of drugs for the thrombus treatment.


Assuntos
Trombose , Camundongos , Animais , Trombose/tratamento farmacológico , Fibrinólise , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Ativador de Plasminogênio Tipo Uroquinase/química , Ativador de Plasminogênio Tipo Uroquinase/farmacologia , Ativador de Plasminogênio Tipo Uroquinase/uso terapêutico , Terapia Trombolítica , Oligopeptídeos/uso terapêutico
9.
Small ; 19(39): e2301751, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37259675

RESUMO

Sustained oral uncoupler 2,4-dinitrophenol (DNP) administration exerts prominent anti-obesity effects, but the adipose tissue off-target disadvantage leads to systemic adverse effects. A novel non-cardiotoxicity DNP delivery method using a biocompatible microneedles patch containing the amphiphilic tetradecanoic acid-DNP ester (TADNP) is described, which is synthesized via esterification on the phenolic hydroxyl of DNP. The TADNP is self-assembled as nanomicelles, which enhance the endocytosis rate of DNP by adipocytes and its permeation in isolated adipose tissues. The microenvironment of adipose tissues promotes the massive release of DNP and plasma and simulated gastrointestinal fluids. The microneedles-delivered TADNP nanomicelles (MN-TADNP) effectively deliver DNP in treated adipose tissues and reduce DNP content in off-target organs. Both oral and MN patch-delivered TADNP micelles effectively exert anti-obesity effects in a mouse model of high-fat diet-induced obesity; and noteworthily, MN-TADNP exhibit more satisfactory biosafety than oral administration. Here, a smart MN patch loaded with tetradecanoic acid-modified DNP is reported, which enhances its accumulation in adipose tissues and exerts an anti-obesity effect without causing any systemic toxicity.


Assuntos
2,4-Dinitrofenol , Lipogênese , Camundongos , Animais , 2,4-Dinitrofenol/farmacologia , Ácido Mirístico/farmacologia , Ésteres/farmacologia , Obesidade/tratamento farmacológico , Adipócitos , Dinitrofenóis/farmacologia
10.
Cell Commun Signal ; 21(1): 4, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604720

RESUMO

Autophagy is a multi-step catabolic process that delivers cellular components to lysosomes for degradation and recycling. The dysregulation of this precisely controlled process disrupts cellular homeostasis and leads to many pathophysiological conditions. The mechanistic target of rapamycin (mTOR) is a central nutrient sensor that integrates growth signals with anabolism to fulfil biosynthetic and bioenergetic requirements. mTOR nucleates two distinct evolutionarily conserved complexes (mTORC1 and mTORC2). However, only mTORC1 is acutely inhibited by rapamycin. Consequently, mTORC1 is a well characterized regulator of autophagy. While less is known about mTORC2, the availability of acute small molecule inhibitors and multiple genetic models has led to increased understanding about the role of mTORC2 in autophagy. Emerging evidence suggests that the regulation of mTORC2 in autophagy is mainly through its downstream effector proteins, and is variable under different conditions and cellular contexts. Here, we review recent advances that describe a role for mTORC2 in this catabolic process, and propose that mTORC2 could be a potential clinical target for the treatment of autophagy-related diseases. Video abstract.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Sirolimo/farmacologia , Autofagia
11.
Crit Rev Food Sci Nutr ; : 1-22, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819268

RESUMO

Milk contains bioactive compounds that have multiple essential benefits. Milk-derived small extracellular vesicles (M-sEVs) have emerged as novel bioactive milk components with various beneficial biological functions and broad applications. The M-sEVs from different mammalian sources have similar composition and bioactive functions. The digestive stability and biocompatibility of the M-sEVs provide a good foundation for their physiological functions. Evidence suggests that M-sEVs promote intestinal, immune, bone, neural, liver, and heart health and show therapeutic effects against cancer, indicating their potential for use in functional foods. In addition, M-sEVs can be developed as natural delivery carriers owing to their superior structural characteristics. Further studies are needed to elucidate the relationship between the specific components and functions of M-sEVs, standardize their extraction processes, and refine relevant clinical trials to advance the future applications of M-sEVs. This review summarizes the structure and composition of M-sEVs isolated from different milk sources and discusses several common extraction methods. Since the introduction of M-sEVs for digestion and absorption, studies have been conducted on their biological functions. Furthermore, we outline the theoretical industrial production route, potential application scenarios of M-sEVs, and the future perspectives of M-sEV research.

12.
Ecotoxicol Environ Saf ; 263: 115276, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499382

RESUMO

As a natural aldehyde organic compound, cinnamaldehyde (CA) is one of the main components of cinnamon essential oil with multiple bioactivities. In this study, we investigated the protective effects of CA on zearalenone (ZEA)-induced apoptosis, barrier dysfunction and mucin reduction, as well as underlying mechanisms in LS174T cells. In the present study, cells pre-treated with or without CA for 24 h were left untreated or subjected to ZEA for indicated time points Our results showed that 10 µM CA significantly prevented ZEA-induced cell viability decline, reversed ZEA-induced increase of the LDH level, cell cycle disruption and apoptosis in LS174T cells. Periodic acid-schiff (PAS) staining analysis showed that CA significantly alleviated the reduction of mucin secretion in LS174T cells caused by ZEA exposure. Western blot analysis showed that CA significantly reversed ZEA-induced reduction of the expression of mucin 2 (MUC2) and tight junction (TJ) proteins (claudin-1, claudin-3, ZO-1 and ZO-2) in LS174T cells. Notably, CA can significantly reduce the upregulation of the main effector of MAPK and NF-κB signaling pathways in LS174T cells. Further study showed that CA protects cells against ZEA-induced cellular damage through JNK/NF-κB signaling pathway in LS174T cells. Supplementation with CA might be an potential strategy to alleviate the damaging effect of ZEA on epithelial cells.


Assuntos
NF-kappa B , Zearalenona , NF-kappa B/metabolismo , Mucinas/metabolismo , Zearalenona/toxicidade , Transdução de Sinais , Apoptose , Proteínas de Junções Íntimas/metabolismo
13.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569610

RESUMO

Adult hippocampal neurogenesis (AHN) is associated with hippocampus-dependent cognitive function, and its initiation is attributed to neural stem cells (NSCs). Dysregulated AHN has been identified in Alzheimer's disease (AD) and may underlie impaired cognitive function in AD. Modulating the function of NSCs and stimulating AHN are potential ways to manipulate AD. Plasmalogen (PLA) are a class of cell membrane glycerophospholipids which exhibit neuroprotective properties. However, the effect of PLA on altered AHN in AD has not been investigated. In our study, PLA(10µg/mL) -attenuated Aß (1-42) (5µM) induced a decrease in NSC viability and neuronal differentiation of NSCs, partially through regulating the Wnt/ß-catenin pathway. Additionally, AD mice were supplemented with PLA (67mg/kg/day) for 6 weeks. PLA treatment improved the impaired AHN in AD mice, including increasing the number of neural stem cells (NSCs) and newly generated neurons. The memory function of AD mice was also enhanced after PLA administration. Therefore, it was summarized that PLA could regulate NSC differentiation by activating the Wnt/ß-catenin pathway and ameliorate AD-related memory impairment through up-regulating AHN.

14.
Crit Rev Food Sci Nutr ; : 1-20, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36533432

RESUMO

Human milk is universally regarded as the gold standard to fulfill nutrition needs of infants. Lactoferrin (LF) is a major multiple bioactive glycoprotein in human milk but little is presented in infant formula. LF can resist digestion in the infant gastrointestinal tract and is absorbed into the bloodstream in an intact form to perform physiological functions. Evidence suggest that LF prevents pathogen infection, promotes immune system development, intestinal development, brain development and bone health, as well as ameliorates iron deficiency anemia. However, more clinical studies of LF need to be further elucidated to determine an appropriate dosage for application in infant formula. LF is sensitive to denaturation induced by processing of infant formula such as heat treatments and spay drying. Thus, further studies should be focus on maximizing the retention of LF activity in the infant formula process. This review summarizes the structural features of LF. Then the digestion, absorption and metabolism of LF in infants are discussed, followed by the function of LF for infants. Further, we summarize LF in infant formula and effects of processing of infant formula on bioactivities of LF, as well as future perspectives of LF research.

15.
Int J Mol Sci ; 23(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36233264

RESUMO

Age-associated loss of skeletal muscle mass and function is one of the main causes of the loss of independence and physical incapacitation in the geriatric population. This study used the D-galactose-induced C2C12 myoblast aging model to explore whether nobiletin (Nob) could delay skeletal muscle aging and determine the associated mechanism. The results showed that Nob intervention improved mitochondrial function, increased ATP production, reduced reactive oxygen species (ROS) production, inhibited inflammation, and prevented apoptosis as well as aging. In addition, Nob improved autophagy function, removed misfolded proteins and damaged organelles, cleared ROS, reduced mitochondrial damage, and improved skeletal muscle atrophy. Moreover, our results illustrated that Nob can not only enhance mitochondrial function, but can also enhance autophagy function and the protein synthesis pathway to inhibit skeletal muscle atrophy. Therefore, Nob may be a potential candidate for the prevention and treatment of age-related muscle decline.


Assuntos
Galactose , Mitocôndrias , Trifosfato de Adenosina/metabolismo , Idoso , Envelhecimento/metabolismo , Senescência Celular , Flavonas , Galactose/efeitos adversos , Galactose/metabolismo , Humanos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo
16.
J Sci Food Agric ; 102(8): 3107-3118, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34786708

RESUMO

BACKGROUND: Probiotics are defined as microorganisms that can exert health benefits for the host. Among the recognized probiotics, Lactobacillus paracasei are one of the most frequently used probiotics in humans. The L. paracasei strain M11-4, isolated from fermented rice (which could ferment soymilk within a short curd time) and fermented soymilk presented high viability, acceptable flavor, and antioxidant activity, which revealed that the strain maybe have a potential antioxidant value. Therefore, it is necessary to further explore the antioxidant activity of L. paracasei strain M11-4. RESULTS: The radical scavenging activities, lipid peroxidation inhibition, and reducing power of L. paracasei M11-4 were the highest in the fermentation culture without cells, whereas the activities of other antioxidant enzymes of L. paracasei M11-4 were high in the cell-free extract and bacterial suspension. Moreover, L. paracasei M11-4 exerted its antioxidant effect by upregulating the gene expression of its antioxidant enzymes - the thioredoxin and glutathione systems - when hydrogen peroxide existed. Supplementation of rats with L. paracasei M11-4 effectively alleviated d-galactose-induced oxidative damage in the liver and serum and prevented d-galactose-induced changes to intestinal microbiota. Supplementation with L. paracasei M11-4 also reduced the elevated expression of thioredoxin and glutathione system genes induced by d-galactose. CONCLUSION: L. paracasei M11-4 has good antioxidant properties both in vitro and in vivo, and its antioxidant mechanism was studied at the molecular level. © 2021 Society of Chemical Industry.


Assuntos
Antioxidantes , Lacticaseibacillus paracasei , Oryza , Probióticos , Animais , Antioxidantes/farmacologia , Alimentos Fermentados/microbiologia , Galactose/metabolismo , Glutationa/metabolismo , Lacticaseibacillus paracasei/metabolismo , Oryza/microbiologia , Probióticos/farmacologia , Ratos , Tiorredoxinas/metabolismo
17.
J Nutr ; 151(11): 3391-3399, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34383918

RESUMO

BACKGROUND: Probiotics are beneficial in intestinal disorders. However, the benefits of Lactobacillus johnsonii in experimental colitis remain unknown. OBJECTIVES: This study aimed to investigate the benefits of L. johnsonii against Citrobacter rodentium-induced colitis. METHODS: Thirty-six 5-wk-old female C57BL/6J mice were randomly assigned to 3 groups (n = 12): control (Ctrl) group, Citrobacter rodentium treatment (CR) group (2 × 109 CFU C. rodentium), and Lactobacillus johnsonii and Citrobacter rodentium cotreatment (LJ + CR) group (109 CFU L. johnsonii with C. rodentium). Colon length, mucosal thickness, proinflammatory cytokine genes, and endoplasmic reticulum stress were tested. RESULTS: The CR group had greater spleen weight, mucosal thickness, and Ki67+ cells (0.4-4.7 times), and a 23.8% shorter colon length than the Ctrl group, which in the LJ + CR group were 22.4%-77.6% lower and 30% greater than in the CR group, respectively. Relative to the Ctrl group, serum proinflammatory cytokines and immune cell infiltration were greater by 0.3-1.6 times and 6.2-8.8 times in the CR group, respectively; relative to the CR group, these were 19.9%-61.9% and 69.5%-84.2% lower in the LJ + CR group, respectively. The mRNA levels of lysozyme (Lyz) and regenerating islet-derived protein III were 22.7%-36.5% lower and 1.5-2.7 times greater in the CR group than in the Ctrl group, respectively, whereas they were 22.2%-25.7% greater and 57.2%-76.9% lower in the LJ + CR group than in the CR group, respectively. Cell apoptosis was 11.9 times greater in the CR group than in the Ctrl group, and 87.4% lower in the LJ + CR group than in the CR group. Consistently, the protein abundances of C/EBP homologous protein (CHOP), cleaved caspase 1 and 3, activating transcription factor 6α (ATF6A), and phospho-inositol-requiring enzyme 1α (P-IRE1A) were 0.3-2.1 times greater in the CR group and 31.1%-60.4% lower in the LJ + CR group. All these indexes did not differ between the Ctrl and LJ + CR groups, except for CD8+ T lymphocytes and CD11b+ and F4/80+ macrophages (1-1.5 times greater in LJ + CR) and mRNA concentration of Lyz2 (20.1% lower in LJ + CR). CONCLUSIONS: L. johnsonii supplementation is a promising nutritional strategy for preventing C. rodentium-induced colitis in mice.


Assuntos
Colite , Infecções por Enterobacteriaceae , Lactobacillus johnsonii , Animais , Citrobacter rodentium , Colo , Estresse do Retículo Endoplasmático , Feminino , Camundongos , Camundongos Endogâmicos C57BL
18.
FASEB J ; 34(3): 4619-4634, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32020679

RESUMO

Promoting brown adipose tissue (BAT) function or browning of white adipose tissue (WAT) provides a defense against obesity. The aim of the study was to investigate whether maternal polar lipids-enriched milk fat globule membrane (MFGM-PL) supplementation to high-fat diet (HFD) rats during pregnancy and lactation could promote brown/beige adipogenesis and protect against HFD-induced adiposity in offspring. Female SD rats were fed a HFD for 8 weeks to induce obesity and, then, fed a HFD during pregnancy and lactation with or without MFGM-PL. Male offspring were weaned at postnatal Day 21 and then fed a HFD for 9 weeks. MFGM-PL treatment to HFD dams decreased the body weight gain and WAT mass as well as lowered the serum levels of insulin and triglycerides in male offspring at weaning. MFGM-PL+HFD offspring showed promoted thermogenic function in BAT and inguinal WAT through the upregulation of UCP1 and other thermogenic genes. In adulthood, maternal MFGM-PL supplementation reduced adiposity and increased oxygen consumption, respiratory exchange ratio, and heat production in male offspring. The enhancement of energy expenditure was correlated with elevated BAT activity and inguinal WAT thermogenic program. In conclusion, maternal MFGM-PL treatment activated thermogenesis in offspring, which exerted long-term beneficial effects against HFD-induced obesity in later life.


Assuntos
Glicolipídeos/metabolismo , Glicoproteínas/metabolismo , Gotículas Lipídicas/metabolismo , Adipogenia/fisiologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Western Blotting , Variações do Número de Cópias de DNA/genética , Variações do Número de Cópias de DNA/fisiologia , DNA Mitocondrial/química , DNA Mitocondrial/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/fisiologia , Feminino , Insulina/sangue , Masculino , Microscopia Eletrônica de Transmissão , Gravidez , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Termogênese/fisiologia , Triglicerídeos/sangue
19.
J Dairy Sci ; 104(1): 228-242, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33189294

RESUMO

Reduced-fat foods have become more popular due to their health benefits; however, reducing the fat content of food affects the sensory experience. Therefore, it is necessary to improve the sensory acceptance of reduced-fat foods to that of full-fat equivalents. The aim of this study was to evaluate the effect of adding whey protein microgels (WPM) with an average diameter of 4 µm, or WPM with adsorbed anthocyanins [WPM (Ant)] on the textural and sensory properties of reduced-fat Cheddar cheese (RFC). Reduced-fat Cheddar cheese was prepared in 2 ways: (1) by adding WPM, designated as RFC+M, or (2) by adding WPM (Ant), designated as RFC+M (Ant). For comparison, RFC without fat substitutes and full-fat Cheddar cheese were also prepared. We discovered that the addition of WPM and WPM (Ant) increased the moisture content, fluidity, and meltability of RFC, and reduced its hardness, springiness, and chewiness. The textural and sensory characteristics of RFC were markedly inferior to those of full-fat Cheddar cheese, whereas addition of WPM and WPM (Ant) significantly improved the sensory characteristics of RFC. The WPM and WPM (Ant) showed a high potential as fat substitutes and anthocyanin carriers to effectively improve the acceptance of reduced-fat foods.


Assuntos
Antocianinas/química , Queijo , Aditivos Alimentares/química , Proteínas do Soro do Leite/química , Animais , Queijo/análise , Microgéis
20.
Ecotoxicol Environ Saf ; 222: 112476, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34214772

RESUMO

The neonicotinoid pesticide, imidacloprid (IMI), is frequently detected in the environment and in foods. It is absorbed and metabolized by the intestine; however, its effects on intestinal barrier integrity are not well studied. We investigated whether IMI disrupts the permeability of the intestinal epithelial barrier via in vivo tests on male Wistar rats, in vitro assays using the human intestinal epithelial cell line, Caco-2, and in silico analyses. A repeated oral dose 90-day toxicity study was performed (0.06 mg/kg body weight/day). IMI exposure significantly increased intestinal permeability, which led to significantly elevated serum levels of endotoxin and inflammatory biomarkers (tumor necrosis factor-alpha and interleukin-1 beta) without any variation in body weight. Decreased transepithelial electrical resistance with increased permeability was also observed in 100 nM and 100 µM IMI-treated Caco-2 cell monolayers. Amounts of tight junction proteins in IMI-treated colon tissues and between IMI-treated Caco-2 cells were significantly lower than those of controls. Increased levels of myosin light chain phosphorylation, myosin light chain kinase (MLCK), and p65 subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB p65) phosphorylation were found in IMI-exposed cells compared with control cells. Furthermore, the barrier loss caused by IMI was rescued by the MLCK inhibitor, ML-7, and cycloheximide. Pregnane X receptor (PXR, NR1I2) was inhibited by low-dose IMI treatment. In silico analysis indicated potent binding sites between PXR and IMI. Together, these data illustrate that IMI induces intestinal epithelial barrier disruption and produces an inflammatory response, involving the down-regulation of tight junctions and disturbance of the PXR-NF-κB p65-MLCK signaling pathway. The intestinal barrier disruption caused by IMI deserves attention in assessing the safety of this neonicotinoid pesticide.


Assuntos
Mucosa Intestinal , Junções Íntimas , Animais , Células CACO-2 , Humanos , Intestinos , Masculino , Neonicotinoides/toxicidade , Nitrocompostos , Permeabilidade , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA