Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893353

RESUMO

Detection of nitro pollutants is an important topic in environmental protection. A total of 3 Cd (II) complexes (1-3) based on 3 soft organic isomers, n-(3,5-dicarboxylato benzyloxy) benzoic acid (n = 2, 3 or 4-H3DBB), and a linear N-donor ligand, 3-bis(imidazole-l-ylmethyl) benzene (3-bibz), have been synthesized hydrothermally. Structural diversity of Complexes 1-3 displays the architectural 2D or 3D change: Complex 1 exhibits a 2D network featuring tri-nuclear metal units, Complex 2 is a 3D framework based on similar tri-nuclear metal units, and Complex 3 shows a 3D network with binuclear units. Fluorescent sensing properties exhibited in all these complexes have been discovered to detect nitrobenzene (NB) selectively and sensitively. In particular, Complex 3 possesses high sensitivity for NB with the lowest detection limit of 1.15 × 10-10 M. The results of the theoretical calculation verified the fluorescence detection mechanism of NB by these Cd-based complexes. Therefore, these Cd-based complexes might be used as excellent luminescent sensors for NB.

2.
Phys Chem Chem Phys ; 25(21): 14907-14917, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37199506

RESUMO

The sensing of nitroaromatic compounds in aqueous solution is closely related to environmental sustainability and human health. In this study, a novel Cd(II) coordination polymer (Cd-HCIA-1) was designed and prepared, and its crystal structure, luminescence performance, detection of nitro pollutants in water, and fluorescence quenching mechanisms were studied. Cd-HCIA-1 exhibited a one-dimensional ladder-like chain based on a T-shape ligand of 5-((4-carboxybenzyl) oxy) isophthalic acid (5-H3CIA). The H-bonds and π-π stacking interactions were then used to construct the supramolecular skeleton in common. Luminescence studies revealed that Cd-HCIA-1 can detect nitrobenzene (NB) in aqueous solution with high sensitivity and selectivity, and the limit of detection was 3.03 × 10-9 mol L-1. The fluorescence quenching mechanism of the photo-induced electron transfer for NB by Cd-HCIA-1 was obtained through an investigation of the pore structure, density of states, excitation energy, orbital interactions, hole-electron analysis, charge transfer, and electron transfer spectra by using density functional theory (DFT) and time-dependent DFT methods. NB was absorbed in the pore, π-π stacking increased the orbital overlap, and the LUMO was mainly composed of NB fragments. The charge transfer between ligands was blocked, resulting in fluorescence quenching. This study on fluorescence quenching mechanisms can be used to develop efficient explosive sensors.

3.
Molecules ; 28(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298958

RESUMO

Water environment pollution is becoming an increasingly serious issue due to industrial pollutants with the rapid development of modern industry. Among many pollutants, the toxic and explosive nitroaromatics are used extensively in the chemical industry, resulting in environmental pollution of soil and groundwater. Therefore, the detection of nitroaromatics is of great significance to environmental monitoring, citizen life and homeland security. Lanthanide-organic complexes with controllable structural features and excellent optical performance have been rationally designed and successfully prepared and used as lanthanide-based sensors for the detection of nitroaromatics. This review will focus on crystalline luminescent lanthanide-organic sensing materials with different dimensional structures, including the 0D discrete structure, 1D and 2D coordination polymers and the 3D framework. Large numbers of studies have shown that several nitroaromatics could be detected by crystalline lanthanide-organic-complex-based sensors, for instance, nitrobenzene (NB), nitrophenol (4-NP or 2-NP), trinitrophenol (TNP) and so on. The various fluorescence detection mechanisms were summarized and sorted out in the review, which might help researchers or readers to comprehensively understand the mechanism of the fluorescence detection of nitroaromatics and provide a theoretical basis for the rational design of new crystalline lanthanide-organic complex-based sensors.


Assuntos
Poluentes Ambientais , Substâncias Explosivas , Elementos da Série dos Lantanídeos , Elementos da Série dos Lantanídeos/química , Luminescência , Fluorescência , Compostos Orgânicos
4.
Inorg Chem ; 61(19): 7286-7295, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35500301

RESUMO

When a multicarboxylate aromatic ligand, 3,5-di(2',4'-dicarboxylphenyl)benzoic acid (H5L), was employed, five structurally similar lanthanide metal-organic frameworks (Ln-MOFs), {[Pr10L6(OH)3Cl(H2O)6]·4C2H8N}n (1), {[Nd10L6(OH)4 (H2O)9]·4C2H8N}n (2), {[Gd10L6(OH)4(H2O)3]·4C2H8N}n (3), {[Ho10L6(OH)4 (H2O)3]·4C2H8N}n (4) and {[Er10L6(OH)4(H2O)6]·4C2H8N}n (5), were synthesized and characterized. Single-crystal X-ray structural analyses disclosed that all five Ln-MOFs crystallize in the trigonal R3 space group. They have three-dimensional mesoporous structure featuring the coexistence of binuclear and tetranuclear species as inorganic building units. The mesoporous structure of 3 was verified by the gas adsorption experiment of N2. Fluorescence analysis showed that 3 can selectively detect Fe3+, Cr2O72-, and H2O2; furthermore, it can be used for the electrochemical detection of trinitrophenol. With the merit of an excellent highly sensitive detection performance, 3 has unpredictable application prospects in future research fields.

5.
Inorg Chem ; 53(23): 12234-6, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25393950

RESUMO

Two new heterometallic coordination polymers, [Na4Ln12(stp)8(OH)16(H2O)12]·10H2O [Ln = Dy (1) and Ho (2)], have been prepared from monosodium 2-sulfoterephthalate (NaH2stp), dysprosium acetate, or holmium acetate. They are isostructural, possessing a [Ln12(µ3-OH)16](20+) wheel-cluster core based on four vertex-sharing cubane-like [Ln4(µ3-OH)4](8+) units. The Ln12 cores are linked by stp ligands into a three-dimensional (3D) architecture. Magnetic studies indicate that complex 1 exhibits slow relaxation of magnetization, and it can be regarded as the first 3D coordination assembly of a Dy12 cluster single-molecule magnet.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123729, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38086232

RESUMO

Nitroaromatic compounds in aqueous undermine environmental sustainability and affect human health. The development of a fluorescent sensor capable of efficiently and selectively detecting trace amounts of nitroaromatic compounds presents a considerable challenge. This study introduced Zn/Cd isomeric coordination polymers (Zn-H2CIA-1/Cd-H2CIA-2), which are synthesized using 5-((4-carboxybenzyl)oxy)isophthalic acid (5-H3CIA) and 1,10-phenanthroline (Phen). The polymers have zero-dimensional discrete crystal structure with a six-coordinated scissor-like shape. The two coordination polymers can be used as fluorescent sensors for detecting nitrobenzene (NB) and demonstrated favorable sensitivity, with detection limits of 1.95 × 10-8 and 4.66 × 10-7 mol/L, respectively. Zn-H2CIA-1 exhibited stronger fluorescence and a more sensitive response to NB compared with Cd-H2CIA-2. To elucidate their fluorescence-quenching mechanisms, we analyzed Zn-H2CIA-1 by performing DFT and TD-DFT calculations. The pore structure, density of states, excitation energy, hole-electron distribution, and orbital composition were analyzed. The suitable size of pores in Zn-H2CIA-1 is the main reason for its high NB selectivity. Moreover, intermolecular π-π stacking interactions result in an orbital overlap between Zn-H2CIA-1 and NB, enabling the transfer of electrons from Zn-H2CIA-1 to NB. This electron transfer is identified as the fundamental cause of fluorescence quenching in Zn-H2CIA-1.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124260, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38603963

RESUMO

Effective detection of the concentration of Ag+ ions in bactericidal fluid is one of the necessary conditions for their effective utilization for sterilization. A novel 2D Cd(II) coordination polymer (CP1), named as [Cd(HDPN)(4,4'-bbpy)]·2H2O, was hydrothermally synthesized using 5-(2',4'-dicarboxylphenyl) nicotic acid (H3DPN) and 4,4'-bis(imidazolyl)biphenyl (4,4'-bbpy). The structure analysis discovered that CP1 possessed a 2D network structure of dinuclear inorganic building blocks. Fluorescence sensing discovered that CP1 could high-sensitively detect Ag+, tetracycline, nitrobenzene and pyrimethanil and the lowest limit of detection (LOD) were 1.44 × 10-8M, 2.15 × 10-8M, 8.09 × 10-8M, and 2.54 × 10-7M, respectively. It is worth noting that the quenching occurs after the addition of Ag+ to the aqueous solution of CP1, and then it gradually recovers when one of the halide anions (X- = Cl-, Br- and I-) is added, forming a unique "on-off-on" fluorescence sensor for Ag+ and constructing a simple logic gate. The fluorescence sensing mechanism of CP1 was investigated using ultraviolet-visible spectroscopy, PXRD, XPS, and DFT methods. The research indicates that CP1 is anticipated to serve as an excellent multifunctional fluorescence sensor, especially as a switch-type sensor for Ag+ and the halide anions.

8.
Dalton Trans ; 53(8): 3797-3807, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38305385

RESUMO

Transition-metal coordination complexes have attracted wide attention in molecular chemistry, but their applications still confront a tremendous challenge. Herein, a novel silver coordination polymer with a formula of {[Ag9(TIPA)6](NO3)9·12H2O}n (Ag-TIPA) was prepared by a solvothermal reaction of silver nitrate with triangular tris(4-imidazolylphenyl)amine (TIPA). The crystalline molecular structure was determined by single-crystal X-ray diffraction, which showed that each Ag(I) was coordinated with two nitrogen atoms of TIPA ligands. Such Ag-TIPA was used as a catalyst for the photodegradation of ciprofloxacin and 4-nitrophenol under UV-visible light irradiation. The results exhibited excellent photocatalytic performance and reusability due to high structure stability in an acidic, neutral and alkaline environment. The experimental findings and density functional theory calculations revealed that metal-ligand charge transfer in Ag-TIPA extended the absorption range of light and improved the charge transfer properties of TIPA. To further understand the photodegradation process, the intermediates were predicted and analysed through electrostatic potential, orbital weighted dual descriptor, and liquid chromatography-mass spectrometry techniques. Based on these findings, a possible degradation mechanism was proposed. This study provides new insights into the design and synthesis of Ag-based coordination polymers with novel structures, excellent catalytic activity, and good durability.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124656, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38880074

RESUMO

The improper utilization of nitrobenzene (NB) and ornidazole (ORN) has resulted in irreversible effects on the environment. By combining experimental investigation, density functional theory (DFT) calculations, and machine learning, an effective green strategy for detecting NB and ORN in aqueous solutions can be developed. In this study, a one-dimensional Cd-based coordination polymer (Cd-HCIA-3) was designed and synthesized using 5-((4-carboxybenzyl)oxy)isophthalic acid and rigid 2,2'-bipyridine under solvothermal reaction conditions. Cd-HCIA-3 exhibits excellent fluorescence properties and stability in aqueous solutions. DFT calculations were performed to predict the fluorescence sensing performance of Cd-HCIA-3, revealing that photoinduced electron transfer is the key mechanism for inducing fluorescence quenching in the presence of NB and ORN, with weak molecular interactions promoting electron transfer. Fluorescence sensing experiments were conducted to verify the DFT results, showing that Cd-HCIA-3 can selectively detect NB and ORN in aqueous solutions with limits of detection of 7.22 × 10-8 and 1.31 × 10-7 mol/L, respectively. This study's findings provide valuable insights into the design and synthesis of fluorescent coordination polymers for target analytes.

10.
Anal Chim Acta ; 1316: 342865, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969412

RESUMO

BACKGROUND: Nitroaromatic compounds are inherently hazardous and explosive, so convenient and rapid detection strategies are needed for the sake of human health and the environment. There is an urgent demand for chemical sensing materials that offer high sensitivity, operational simplicity, and recognizability to effectively monitor nitroaromatic residues in industrial wastewater. Despite its importance, the mechanisms underlying fluorescence quenching or enhancement in fluorescent sensing materials have not been extensively researched. The design and synthesis of multiresponsive fluorescent sensing materials have been a great challenge until now. RESULTS: In this study, a one-dimensional Cd-based fluorescent porous coordination polymer (Cd-CIP-1) was synthesized using 5-(4-cyanobenzyl)isophthalic acid (5-H2CIP) and 4,4'-bis(1-imidazolyl)biphenyl (4,4'-bimp) and used for the selective detection of nitrobenzene in aqueous solution by fluorescence quenching, with a limit of detection of 1.38 × 10-8 mol L-1. The presence of aniline in the Cd-CIP-1 solution leads to the enhancement of fluorescence property. Density functional theory and time-dependent density functional theory calculations were carried out to elucidate the mechanisms of the fluorescence changes. This study revealed that the specific pore size of Cd-CIP-1 facilitates analyte screening and enhances host-guest electron coupling. Furthermore, π-π interactions and hydrogen bond between Cd-CIP-1 and the analytes result in intermolecular orbital overlap and thereby boosting electron transfer efficiency. The different electron flow directions in NB@Cd-CIP-1 and ANI@Cd-CIP-1 lead to fluorescence quenching and enhancement. SIGNIFICANCE AND NOVELTY: The multiresponsive coordination polymer (Cd-CIP-1) can selectively detect nitrobenzene and recognize aniline in aqueous solutions. The mechanism of fluorescence quenching and enhancement has been thoroughly elucidated through a combination of density functional theory and experimental approaches. This study presents a promising strategy for the practical implementation of a multiresponsive fluorescent chemical sensor.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123803, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159382

RESUMO

Luminescent coordination polymers (LCPs) have garnered significant attention from researchers as promising materials for detecting contaminants. In this paper, three new LCPs ([Zn(tib)(opda)]n⋅H2O (1), [Zn3(tib)2(mpda)3]n⋅5H2O (2), [Zn (tib)(ppda)]n⋅H2O (3)) with different structures (LCP 1-3: 1D, 2D, 1D) using phenylenediacetic acid isomers and 1,3,5-tris (1-imidazolyl) benzene (tib) are synthesized. The specific surface areas (BET) of LCP 1-3 are 4 m2/g, 19 m2/g, and 13 m2/g respectively. LCP 1-3 exhibit excellent fluorescence properties and can serve as fluorescent probe for the detection of inorganic contaminants and organic contaminants. Due to the large BET of LCP 2, the detection limits for trace analytes surpass those of LCP 1 and 3. The detection limits of LCP 2 for Fe3+, nitrobenzene (NB), chloramphenicol (CAP), and pyrimethanil (PTH) are 8.3 nM, 0.016 µM, 0.19 µM, and 0.032 µM, respectively, and the fluorescence quenching rates are 98.6 %, 98.8 %, 92.3 %, and 98.8 %, respectively. These values outperform most reported in the literature. The quantum yields of LCP 1-3 are 11.84 %, 25.22 %, 22.00 % respectively. Real sample testing of LCP 1-3 reveals favorable performance, where spiked recoveries of LCP 2 for the detection of pyrimethanil in grape skins ranged from 99.62 % to 119.3 % with a relative standard deviation (RSD) of 0.627 % to 4.56 % (n = 3). The fluorescence quenching mechanism was attributed to a combination of photoelectron transfer (PET), resonance energy transfer (RET), and competitive absorption (CA). This study advances the application of LCPs in luminescence sensing and contributes to the expansion of novel materials for detecting environmental pollutants.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121894, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36152506

RESUMO

Due to the indiscriminate abuse of pesticides and antibiotics has caused serious threats to the environment and human and animal bodies, the detection of antibiotics and pesticides has attracted widespread attention in recent years. Herein, a novel 2D Cd (II)-MOF, [Cd(L)0.5(1,2-bimb)] (Cd-L-1,2-bimb), [H4L = 1, 1'-ethylbiphenyl -3, 3', 5, 5'- tetracarboxylic acid, 1, 2-bimb = 1, 2-bis[(1H-imidazol-1-yl) methyl] benzene] is synthesized. Cd-L-1,2-bimb has excellent stability in different organic solvents and in the range of pH 1.1-12.5. Cd-L-1,2-bimb exhibits high selectivity, high sensitivity, and fast luminescent response to pesticides [pyrimethanil (PTH, LOD = 2.2 µM) and abamectin benzoate (AMB, LOD = 2.39 µM)] and antibiotic contaminants tetracycline (TET, LOD = 0.13 µM). Cd-L-1,2-bimb displays discriminative fluorescence when detecting AMB and PTH, and is an implication logic gate. Finally, the possible detection mechanism of Cd-L-1,2-bimb toward different pollutants is also further investigated. This MOF-based multifunctional sensor opens up new prospects for environmental monitors.


Assuntos
Estruturas Metalorgânicas , Praguicidas , Humanos , Cádmio , Água , Benzoatos , Tetraciclina , Antibacterianos/análise
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 265: 120340, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492511

RESUMO

A highly stable heterometallic MOF, {[(Me2NH2)2]·[Cd2K2(L)2(H2O)]}n (H4L = terphenyl-2, 2', 4, 4'-tetracarboxylic acid) (1), was synthesized. 1 featuring one-dimensional channels can efficiently detect Aspartic acid with a low limit of detection (LOD) value (2.5 µM). More interestingly, 1 can encapsulate Eu3+ and sensitize the visible-emitting characteristic fluorescence of Eu3+ in aqueous solution. Then, Eu3+@CdK-MOF is found to be an excellent fluorescence sensor for the detection of Ornidazole (ODZ) and the portable ODZ test paper is also successfully designed. Eu3+@CdK-MOF can also be used as fluorescent ink to write some words. The words can be hidden when treated with acid vapor and then the words can be restored when treated with alkaline vapor. More importantly, the hidden information can be read repeatedly. Therefore, this reversible light-emitting and reusable property have great potential for development in information encryption and decryption and information storage.


Assuntos
Estruturas Metalorgânicas , Ornidazol , Ácido Aspártico , Cádmio , Limite de Detecção
14.
RSC Adv ; 11(39): 23975-23984, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35479019

RESUMO

Four fluorescent zinc(ii) metal-organic frameworks, namely [Zn(HCIA)(4,4'-bipy)] (1), [Zn2(CIA)(OH)(1,4-bibz)1.5]·H2O (2), [Zn(CIA)(OH) (4,4'-bbpy)] (3), and [Zn2(HCIA) (4,4'-bimp)]·H2O (4), were prepared hydrothermally with a flexible triangular ligand (H3CIA) and a series of linear N-donor ligands (H3CIA = 5-(2-carboxybenzyloxy) isophthalic acid, 4,4'-bipy = 4,4'-bipydine, 1,4-bibz = 1,4-bis(1-imidazoly)benzene; 4,4'-bbpy = 4,4'-bis (imidazolyl) biphenyl; 4,4'-bimp = 4,4'-bis (imidazole-1-ylethyl) biphenyl). Structural analyses revealed that complex 1 exhibited a 2D brick-like network structure based on the basic bimetallic ring, 2 was also a 2D interspersed structure from the 1D tubular structure, compound 3 possessed a 2D (4,4) network with 4,4'-bbpy occupying the holes, and complex 4 displayed a 2D network from the 1D ladder-like chain. The thermal stabilities and fluorescent properties of these complexes were investigated in the solid state. The fluorescent sensing experiments revealed that all Zn-MOFs could highly sensitively detect nitrobenzene in aqueous solution, which indicated that these materials can be used as fluorescent probes for the detection of nitrobenzene.

15.
ACS Omega ; 6(10): 6810-6816, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33748594

RESUMO

A novel Sm-metal-organic framework (MOF) sensor with the molecular formula Sm8(HDBA)6·H2O has been prepared based on a penta-carboxyl organic ligand (H5DBA = 3,5-di(2',4'-dicarboxylphenyl)benzoic acid) and samarium nitrate under solvothermal conditions. Sm-MOF is characterized by single-crystal X-ray diffraction analysis, elemental analysis, thermogravimetric analysis, and powder X-ray diffraction analysis. Structural analysis shows that the dimer metal units are alternately connected to form a one-dimensional chain, and this chain is connected by the bridging carboxyl oxygen of the ligand H5DBA to form a two-dimensional double-layer plane, which then expands into a three-dimensional microporous framework. Fluorescence detection studies show that Sm-MOF can detect Ag+ ions, MnO4 - anions, and cimetidine tablets with high sensitivity and selectivity and can also be used to electrochemically detect o-nitrophenol in water. High-sensitivity detection capability of the Sm-MOF can enrich the application of samarium complexes in multifunctional sensors.

16.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 11): m1375-6, 2010 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-21588816

RESUMO

The title complex, [Sr(C(12)H(8)N(2))(2)(H(2)O)(4)](C(2)N(10)), contains an [Sr(phen)(2)(H(2)O)(4)](2+) cation (phen is 1,10-phenanthroline) and a 5,5'-diazenediylditetra-zolide anion (site symmetry 2). The Sr(2+) cation (site symmetry 2) is coordinated by four N atoms from two chelating phen and four water mol-ecules. In the crystal structure, the water mol-ecules and the N atoms in the tetra-zolide rings form an extensive range of O-H⋯N hydrogen bonds which link the complex into a two-dimensional structure. An adjacent layer further yields a three-dimensional supramolecular network by offset face-to-face π-π stacking inter-actions of the phen ligands [with centroid-centroid distances of 3.915 (2) and 4.012 (2) Å]. The two bridging N atoms of the anion are equally disordered about the twofold rotation axis.

17.
ACS Omega ; 5(51): 33039-33046, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33403265

RESUMO

A novel three-dimensional microporous terbium(III) metal-organic framework (Tb-MOF) named as [Tb10 (DBA)6(OH)4(H2O)5]·(H3O)4 (1), was successfully obtained by a solvothermal method based on terbium nitrate and 5-di(2',4'-dicarboxylphenyl) benzoic acid (H5DBA). The Tb-MOF has been characterized by single crystal X-ray diffraction, elemental analysis, thermogravimetry, and fluorescence properties, and the purity was further confirmed by powder X-ray diffraction (PXRD) analysis. Structural analysis shows that there are two kinds of metal cluster species: binuclear and tetranuclear, which are linked by H5DBA ligands in two µ7 high coordination fashions into a three-dimensional microporous framework. Fluorescence studies show that the Tb-MOF can detect H2O2, Fe3+, and Cr2O7 2- with high sensitivity and selectivity and can also be used for electrochemical detection of exposed 2,4,6-trinitrophenylamine (TPA) in water. The highly selective and sensitive detection ability of the Tb-MOF might make it a potential multifunctional sensor in the future.

18.
Dalton Trans ; 49(29): 9961-9964, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32686810

RESUMO

Three-fold interpenetrating Zn(ii) MOF with the dense π-stacking of flexible ligands exhibit long-lived phosphorescence emission up to 91 ms at room temperature. Photoelectric measurements show efficient electro-hole separation based on the long lifetime of triplet state exciton.

19.
RSC Adv ; 9(37): 21086-21094, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35521299

RESUMO

Two new Zn(ii) coordination complexes, formulated as [Zn(opda)(pbib)] (1) and [Zn(ppda)(pbib)(H2O)] (2), (H2opda = 1,2-phenylenediacetic acid, H2ppda = 1,4-phenylene-diacetic acid, pbib = 1,4-bis(1-imidazoly)benzene), have been synthesized. The opda ligands extend a 1D chain containing (Zn-pbib) polymer chains into a 2D layer in 1. In 2, the ppda ligands link Zn(ii) atoms to form a 2D network, then the rigid bis(imidazole) ligands give rise to the 3D structure. The fluorescence property application and mechanisms of two complexes for detecting Cr2O7 2- and o-NP have been researched. For two complexes, the high quenching percentage in low concentration aqueous solution are 95.75% (Cr2O7 2-, 1), 95.28% (Cr2O7 2-, 2) and 97.56% (o-NP, 1), 96.59% (o-NP, 2). Compared with 2, complex 1 has higher quenching percentage, this could be because 1 is a 3D supramolecular with a large hole. The detection limits have been measured to be 2.992 × 10-7 M (Cr2O7 2-, 1), and 4.372 × 10-7 M (Cr2O7 2-, 2), 2.103 × 10-7 M (o-NP, 1), 1.862 × 10-7 M (o-NP, 2), respectively. The emissions of two complexes could be effectively and selectively quenched by o-NP and Cr2O7 2-, showing their potential as multi-responsive luminescent sensors.

20.
RSC Adv ; 9(1): 307-312, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-35521577

RESUMO

A novel 3D Cd(ii) coordination polymer {[Cd(ddpa)(2,2'-bpy)]·H2O} n (1) (H2ddpa = 5,10-dioxo-5,10-dihydro-4,9-dioxapyrene-2,7-dicarboxylic acid, 2,2'-bpy = 2,2'-bipyridine) is hydrothermally synthesized in situ, and the influencing factors and mechanism for the in situ reaction are briefly discussed. The synthesis of 1 requires the formation of a new C-O ester bond. This current study confirms that metal ions and N-donor ligands play important roles in the domination of the in situ ligand from 6,6'-dinitro-2,2',4,4'-biphenyltetracarboxylic acid (H4dbta). Furthermore, the structure, thermal stability and photoluminescent property of 1 are also investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA