Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pathol ; 241(5): 589-599, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27976371

RESUMO

Diabetic nephropathy is the leading cause of end-stage renal disease. Diabetic patients have increased plasma concentrations of apolipoprotein C-I (apoCI), and meta-analyses found that a polymorphism in APOC1 is associated with an increased risk of developing nephropathy. To investigate whether overexpressing apoCI contributes to the development of kidney damage, we studied renal tissue and peritoneal macrophages from APOC1 transgenic (APOC1-tg) mice and wild-type littermates. In addition, we examined renal material from autopsied diabetic patients with and without diabetic nephropathy and from autopsied control subjects. We found that APOC1-tg mice, but not wild-type mice, develop albuminuria, renal dysfunction, and glomerulosclerosis with increased numbers of glomerular M1 macrophages. Moreover, compared to wild-type macrophages, stimulated macrophages isolated from APOC1-tg mice have increased cytokine expression, including TNF-alpha and TGF-beta, both of which are known to increase the production of extracellular matrix proteins in mesangial cells. These results suggest that APOC1 expression induces glomerulosclerosis, potentially by increasing the cytokine response in macrophages. Furthermore, we detected apoCI in the kidneys of diabetic patients, but not in control kidneys. Moreover, patients with diabetic nephropathy have significantly more apoCI present in glomeruli compared to diabetic patients without nephropathy, suggesting that apoCI could be involved in the development of diabetic nephropathy. ApoCI co-localized with macrophages. Therefore, apoCI is a promising new therapeutic target for patients at risk of developing nephropathy. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Apolipoproteína C-I/metabolismo , Nefropatias Diabéticas/etiologia , Regulação da Expressão Gênica , Falência Renal Crônica/etiologia , Idoso , Albuminúria/etiologia , Albuminúria/patologia , Animais , Apolipoproteína C-I/genética , Encéfalo/metabolismo , Encéfalo/patologia , Citocinas/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Feminino , Humanos , Falência Renal Crônica/metabolismo , Falência Renal Crônica/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/metabolismo , Miocárdio/patologia , Pâncreas/metabolismo , Pâncreas/patologia , Baço/metabolismo , Baço/patologia
2.
JCI Insight ; 9(8)2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646937

RESUMO

Sepsis is a leading cause of mortality worldwide, and pneumonia is the most common cause of sepsis in humans. Low levels of high-density lipoprotein cholesterol (HDL-C) levels are associated with an increased risk of death from sepsis, and increasing levels of HDL-C by inhibition of cholesteryl ester transfer protein (CETP) decreases mortality from intraabdominal polymicrobial sepsis in APOE*3-Leiden.CETP mice. Here, we show that treatment with the CETP inhibitor (CETPi) anacetrapib reduced mortality from Streptococcus pneumoniae-induced sepsis in APOE*3-Leiden.CETP and APOA1.CETP mice. Mechanistically, CETP inhibition reduced the host proinflammatory response via attenuation of proinflammatory cytokine transcription and release. This effect was dependent on the presence of HDL, leading to attenuation of immune-mediated organ damage. In addition, CETP inhibition promoted monocyte activation in the blood prior to the onset of sepsis, resulting in accelerated macrophage recruitment to the lung and liver. In vitro experiments demonstrated that CETP inhibition significantly promoted the activation of proinflammatory signaling in peripheral blood mononuclear cells and THP1 cells in the absence of HDL; this may represent a mechanism responsible for improved bacterial clearance during sepsis. These findings provide evidence that CETP inhibition represents a potential approach to reduce mortality from pneumosepsis.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol , Monócitos , Streptococcus pneumoniae , Animais , Feminino , Humanos , Camundongos , Apolipoproteína E3/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , HDL-Colesterol/sangue , HDL-Colesterol/metabolismo , Modelos Animais de Doenças , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/mortalidade , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/microbiologia , Sepse/imunologia , Sepse/mortalidade , Sepse/microbiologia , Sepse/metabolismo , Streptococcus pneumoniae/imunologia , Células THP-1
3.
Curr Opin Genet Dev ; 80: 102056, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37244110

RESUMO

White and brown adipose tissues are highly dynamic organs anticipating and responding to changes in the environment. The circadian timing system facilitates anticipation, and it is therefore not surprising that circadian disturbances, a prominent feature of modern 24/7 society, increase the risk for (cardio)metabolic diseases. In this mini-review, we will address mechanisms and strategies to mitigate disease risk associated with circadian disturbances. In addition, we discuss the opportunities arising from the knowledge we gained about circadian rhythms in these adipose tissues, including the application of chronotherapy, optimizing endogenous circadian rhythms to allow for more effective intervention, and the identification of novel therapeutic targets.


Assuntos
Relógios Circadianos , Doenças Metabólicas , Humanos , Ritmo Circadiano/genética , Cronoterapia , Tecido Adiposo
4.
JCI Insight ; 8(4)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36810253

RESUMO

Short-chain fatty acids, including butyrate, have multiple metabolic benefits in individuals who are lean but not in individuals with metabolic syndrome, with the underlying mechanisms still being unclear. We aimed to investigate the role of gut microbiota in the induction of metabolic benefits of dietary butyrate. We performed antibiotic-induced microbiota depletion of the gut and fecal microbiota transplantation (FMT) in APOE*3-Leiden.CETP mice, a well-established translational model for developing human-like metabolic syndrome, and revealed that dietary butyrate reduced appetite and ameliorated high-fat diet-induced (HFD-induced) weight gain dependent on the presence of gut microbiota. FMT from butyrate-treated lean donor mice, but not butyrate-treated obese donor mice, into gut microbiota-depleted recipient mice reduced food intake, attenuated HFD-induced weight gain, and improved insulin resistance. 16S rRNA and metagenomic sequencing on cecal bacterial DNA of recipient mice implied that these effects were accompanied by the selective proliferation of Lachnospiraceae bacterium 28-4 in the gut as induced by butyrate. Collectively, our findings reveal a crucial role of gut microbiota in the beneficial metabolic effects of dietary butyrate as strongly associated with the abundance of Lachnospiraceae bacterium 28-4.


Assuntos
Butiratos , Síndrome Metabólica , Humanos , Animais , Camundongos , Butiratos/efeitos adversos , Obesidade/metabolismo , RNA Ribossômico 16S , Aumento de Peso , Proliferação de Células
5.
JCI Insight ; 8(9)2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36976644

RESUMO

Invariant natural killer T (iNKT) cells act at the interface between lipid metabolism and immunity because of their restriction to lipid antigens presented on CD1d by antigen-presenting cells (APCs). How foreign lipid antigens are delivered to APCs remains elusive. Since lipoproteins routinely bind glycosylceramides structurally similar to lipid antigens, we hypothesized that circulating lipoproteins form complexes with foreign lipid antigens. In this study, we used 2-color fluorescence correlation spectroscopy to show, for the first time to our knowledge, stable complex formation of lipid antigens α-galactosylceramide (αGalCer), isoglobotrihexosylceramide, and OCH, a sphingosine-truncated analog of αGalCer, with VLDL and/or LDL in vitro and in vivo. We demonstrate LDL receptor-mediated (LDLR-mediated) uptake of lipoprotein-αGalCer complexes by APCs, leading to potent complex-mediated activation of iNKT cells in vitro and in vivo. Finally, LDLR-mutant PBMCs of patients with familial hypercholesterolemia showed impaired activation and proliferation of iNKT cells upon stimulation, underscoring the relevance of lipoproteins as a lipid antigen delivery system in humans. Taken together, circulating lipoproteins form complexes with lipid antigens to facilitate their transport and uptake by APCs, leading to enhanced iNKT cell activation. This study thereby reveals a potentially novel mechanism of lipid antigen delivery to APCs and provides further insight into the immunological capacities of circulating lipoproteins.


Assuntos
Células T Matadoras Naturais , Humanos , Células Apresentadoras de Antígenos , Lipoproteínas/metabolismo
6.
JBMR Plus ; 5(10): e10504, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34693186

RESUMO

Physiological circadian (ie, 24-hour) rhythms are critical for bone health. Animal studies have shown that genes involved in the intrinsic molecular clock demonstrate potent circadian expression patterns in bone and that genetic disruption of these clock genes results in a disturbed bone structure and quality. More importantly, circulating markers of bone remodeling show diurnal variation in mice as well as humans, and circadian disruption by, eg, working night shifts is associated with the bone remodeling disorder osteoporosis. In this review, we provide an overview of the current literature on rhythmic bone remodeling and its underlying mechanisms and identify critical knowledge gaps. In addition, we discuss novel (chrono)therapeutic strategies to reduce osteoporosis by utilizing our knowledge on circadian regulation of bone. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

7.
Atherosclerosis ; 328: 33-37, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34082327

RESUMO

BACKGROUND AND AIMS: The APOE ε4 genotype has a higher risk for developing coronary artery disease (CAD), but there is preliminary evidence that antioxidative lifestyle factors interact with APOE genotype on CAD risk. Here, we assessed the effect modification of physical activity, oily fish and polyunsaturated fatty acid (PUFA) intake with APOE genotype on risk of incident CAD. METHODS: The present study comprised 345,659 white European participants from UK Biobank (mean age: 56.5 years, 45.7% men) without a history of CAD. Information regarding physical activity, oily fish intake and PUFA intake was collected through questionnaires, and information on incident CAD through linkage with hospital admission records. Analyses were performed using Cox proportional hazard models adjusted for age and sex. RESULTS: Higher physical activity level and oily fish intake were both associated with a lower incidence of CAD. However, these associations were similar across the different APOE genotypes (p-values for interaction > 0.05). Most notable, higher PUFA intake was associated with a lower CAD risk in APOE ε4 genotype carriers (hazard ratio: 0.76, 95% confidence interval: 0.63-0.92), and not in APOE ε3/ε3 genotype carriers (0.90; 0.79, 1.02), but without statistical evidence for effect modification (p-valueinteraction = 0.137). CONCLUSIONS: While higher physical activity and high fish and PUFA intake were associated with a lower risk of incident CAD, no evidence for interaction of these lifestyle factors with APOE genotype was observed in UK Biobank participants. Interventions intended to reduce cardiovascular risk might therefore be similarly effective across the APOE genotype carriers.


Assuntos
Doença da Artéria Coronariana , Animais , Apolipoproteínas E/genética , Bancos de Espécimes Biológicos , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , Feminino , Interação Gene-Ambiente , Genótipo , Humanos , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Reino Unido/epidemiologia
8.
Curr Opin Pharmacol ; 52: 52-60, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32619926

RESUMO

Exercise is a valuable tool in the prevention and treatment of cardiometabolic diseases like obesity and type 2 diabetes. Interestingly, endocannabinoids (eCBs), involved in a large range of physiological processes, are elevated with both obesity and acute exercise. In this review we outline this paradox overlap in the context of metabolic health and delineate the transcriptomic response of skeletal muscle to acute and chronic aerobic and resistance exercise in relation to the endocannabinoid system by utilizing a meta-analyses tool. We show that exercise modulates the expression of receptors and enzymes involved in the synthesis and breakdown of eCBs and discuss that eCBs possibly interfere with the anti-inflammatory effect of exercise. The endocannabinoid system (ECS), consisting of certain endogenous lipids (i.e. endocannabinoids), their receptors and associated metabolic enzymes, is involved in the modulation of a plethora of cognitive and physiological processes. Besides its role in the control of, for example, mood formation and immune responses, the ECS takes part in the regulation of appetite and energy metabolism [1,2]. In this current opinion review we will focus on the increased activity of the ECS that is associated with cardiometabolic diseases like obesity and type 2 diabetes (T2D), which paradoxically overlaps with the acute physiological response to exercise. After 1) outlining the role of the ECS in metabolic health, we will 2) discuss the link between endocannabinoid (eCB) action in skeletal muscle and cardiometabolic disease, 3) investigate how exercise modulates the gene expression of ECS components in skeletal muscle and 4) delineate the impact of the ECS on the immune response by skeletal muscle.


Assuntos
Endocanabinoides/metabolismo , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Receptores de Canabinoides/metabolismo , Animais , Endocanabinoides/imunologia , Perfilação da Expressão Gênica/métodos , Humanos , Músculo Esquelético/imunologia , Receptores de Canabinoides/imunologia
9.
Diab Vasc Dis Res ; 17(1): 1479164119892140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31868000

RESUMO

BACKGROUND: C-type lectin receptors, including Dectin-2, are pattern recognition receptors on monocytes and macrophages that mainly recognize sugars and sugar-like structures present on fungi. Activation of C-type lectin receptors induces downstream CARD9 signalling, leading to the production of cytokines. We hypothesized that under hyperglycaemic conditions, as is the case in diabetes mellitus, glycosylated protein (sugar-like) structures activate C-type lectin receptors, leading to immune cell activation and increased atherosclerosis development. METHODS: Low-density lipoprotein receptor-deficient mice were lethally irradiated and transplanted with bone marrow from control wild-type, Dectin-2-/- or Card9-/- mice. After 6 weeks of recovery, mice received streptozotocin injections (50 mg/g BW; 5 days) to induce hyperglycaemia. After an additional 2 weeks, mice were fed a Western-type diet (0.1% cholesterol) for 10 weeks. RESULTS AND CONCLUSION: Deletion of haematopoietic Dectin-2 reduced the number of circulating Ly6Chi monocytes, increased pro-inflammatory cytokine production, but did not affect atherosclerosis development. Deletion of haematopoietic CARD9 tended to reduce macrophage and collagen content in atherosclerotic lesions, again without influencing the lesion size. Deletion of haematopoietic Dectin-2 did not influence atherosclerosis development under hyperglycaemic conditions, despite some minor effects on inflammation. Deletion of haematopoietic CARD9 induced minor alterations in plaque composition under hyperglycaemic conditions, without affecting lesion size.


Assuntos
Doenças da Aorta/etiologia , Aterosclerose/etiologia , Glicemia/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Diabetes Mellitus Experimental/complicações , Deleção de Genes , Células-Tronco Hematopoéticas/metabolismo , Lectinas Tipo C/genética , Animais , Antígenos Ly/metabolismo , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores/sangue , Transplante de Medula Óssea , Proteínas Adaptadoras de Sinalização CARD/deficiência , Células Cultivadas , Colágeno/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/sangue , Dieta Ocidental , Predisposição Genética para Doença , Lectinas Tipo C/deficiência , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Monócitos/patologia , Placa Aterosclerótica , Receptores de LDL/deficiência , Receptores de LDL/genética
10.
JCI Insight ; 52019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31237863

RESUMO

Bile acids play a major role in the regulation of lipid and energy metabolism. Here we propose the hepatic bile acid uptake transporter Na+ taurocholate co-transporting polypeptide (NTCP) as a target to prolong postprandial bile acid elevations in plasma. Reducing hepatic clearance of bile acids from plasma by genetic deletion of NTCP moderately increased plasma bile acid levels, reduced diet-induced obesity, attenuated hepatic steatosis, and lowered plasma cholesterol levels. NTCP-G protein-coupled bile acid receptor (TGR5) double knockout mice were equally protected against diet-induced-obesity as NTCP single knockout mice. NTCP knockout mice displayed decreased intestinal fat absorption and a trend towards higher fecal energy output. Furthermore, NTCP deficiency was associated with an increased uncoupled respiration in brown adipose tissue, leading to increased energy expenditure. We conclude that targeting NTCP-mediated bile acid uptake can be a novel approach to treat obesity and obesity-related hepatosteatosis by simultaneously dampening intestinal fat absorption and increasing energy expenditure.


Assuntos
Dieta Hiperlipídica , Fígado Gorduroso/genética , Obesidade/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Receptores Acoplados a Proteínas G/genética , Simportadores/genética , Aumento de Peso/genética , Tecido Adiposo Marrom/metabolismo , Animais , Ácidos e Sais Biliares/sangue , Glicemia/metabolismo , Peso Corporal , Colesterol/sangue , Gorduras na Dieta/metabolismo , Metabolismo Energético/genética , Fígado Gorduroso/metabolismo , Teste de Tolerância a Glucose , Insulina/sangue , Absorção Intestinal/genética , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Triglicerídeos/sangue
11.
EMBO Mol Med ; 10(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29343498

RESUMO

Brown adipose tissue (BAT) activation stimulates energy expenditure in human adults, which makes it an attractive target to combat obesity and related disorders. Recent studies demonstrated a role for G protein-coupled receptor 120 (GPR120) in BAT thermogenesis. Here, we investigated the therapeutic potential of GPR120 agonism and addressed GPR120-mediated signaling in BAT We found that activation of GPR120 by the selective agonist TUG-891 acutely increases fat oxidation and reduces body weight and fat mass in C57Bl/6J mice. These effects coincided with decreased brown adipocyte lipid content and increased nutrient uptake by BAT, confirming increased BAT activity. Consistent with these observations, GPR120 deficiency reduced expression of genes involved in nutrient handling in BAT Stimulation of brown adipocytes in vitro with TUG-891 acutely induced O2 consumption, through GPR120-dependent and GPR120-independent mechanisms. TUG-891 not only stimulated GPR120 signaling resulting in intracellular calcium release, mitochondrial depolarization, and mitochondrial fission, but also activated UCP1. Collectively, these data suggest that activation of brown adipocytes with the GPR120 agonist TUG-891 is a promising strategy to increase lipid combustion and reduce obesity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Compostos de Bifenilo/farmacologia , Mitocôndrias/metabolismo , Fenilpropionatos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Adipócitos Marrons/citologia , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Adipócitos Brancos/citologia , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Lipídeos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Oxirredução , Consumo de Oxigênio/efeitos dos fármacos , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/metabolismo , Proteína Desacopladora 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA