Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38405731

RESUMO

Hematopoietic stem cell transplantation (HSCT) conditioning using antibody-drug conjugates (ADC) is a promising alternative to conventional chemotherapy- and irradiation-based conditioning regimens. The drug payload bound to an ADC is a key contributor to its efficacy and potential toxicities; however, a comparison of HSCT conditioning ADCs produced with different toxic payloads has not been performed. Indeed, ADC optimization studies in general are hampered by the inability to produce and screen multiple combinations of antibody and drug payload in a rapid, cost-effective manner. Herein, we used Click chemistry to covalently conjugate four different small molecule payloads to streptavidin; these streptavidin-drug conjugates can then be joined to any biotinylated antibody to produce stable, indirectly conjugated ADCs. Evaluating CD45-targeted ADCs produced with this system, we found the pyrrolobenzodiazepine (PBD) dimer SGD-1882 was the most effective payload for targeting mouse and human hematopoietic stem cells (HSCs) and acute myeloid leukemia cells. In murine syngeneic HSCT studies, a single dose of CD45-PBD enabled near-complete conversion to donor hematopoiesis. Finally, human CD45-PBD provided significant antitumor benefit in a patient-derived xenograft model of acute myeloid leukemia. As our streptavidin-drug conjugates were generated in-house with readily accessible equipment, reagents, and routine molecular biology techniques, we anticipate this flexible platform will facilitate the evaluation and optimization of ADCs for myriad targeting applications.

2.
PLoS One ; 19(5): e0300174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696390

RESUMO

Off-the-shelf immunotherapeutics that suppress tumor growth and provide durable protection against relapse could enhance cancer treatment. We report preclinical studies on a CD33 x CD3 bivalent bispecific diabody, AMV564, that not only suppresses tumor growth, but also facilitates memory responses in a mouse model of acute myelogenous leukemia (AML). Mechanistically, a single 5-day treatment with AMV564 seems to reduce tumor burden by redirection of T cells, providing a time window for allogeneic or other T cells that innately recognize tumor antigens to become activated and proliferate. When the concentration of bispecific becomes negligible, the effector: target ratio has also shifted, and these activated T cells mediate long-term tumor control. To test the efficacy of AMV564 in vivo, we generated a CD33+ MOLM13CG bioluminescent human cell line and optimized conditions needed to control these cells for 62 days in vivo in NSG mice. Of note, not only did MOLM13CG become undetectable by bioluminescence imaging in response to infusion of human T cells plus AMV564, but also NSG mice that had cleared the tumor also resisted rechallenge with MOLM13CG in spite of no additional AMV564 treatment. In these mice, we identified effector and effector memory human CD4+ and CD8+ T cells in the peripheral blood immediately prior to rechallenge that expanded significantly during the subsequent 18 days. In addition to the anti-tumor effects of AMV564 on the clearance of MOLM13CG cells in vivo, similar effects were seen when primary CD33+ human AML cells were engrafted in NSG mice even when the human T cells made up only 2% of the peripheral blood cells and AML cells made up 98%. These studies suggest that AMV564 is a novel and effective bispecific diabody for the targeting of CD33+ AML that may provide long-term survival advantages in the clinic.


Assuntos
Anticorpos Biespecíficos , Complexo CD3 , Memória Imunológica , Leucemia Mieloide Aguda , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico , Animais , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/tratamento farmacológico , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/imunologia , Camundongos , Complexo CD3/imunologia , Memória Imunológica/efeitos dos fármacos , Linhagem Celular Tumoral , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos
3.
bioRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798338

RESUMO

Multiple Myeloma (MM) remains incurable despite advances in treatment options. Although tumor subtypes and specific DNA abnormalities are linked to worse prognosis, the impact of immune dysfunction on disease emergence and/or treatment sensitivity remains unclear. We established a harmonized consortium to generate an Immune Atlas of MM aimed at informing disease etiology, risk stratification, and potential therapeutic strategies. We generated a transcriptome profile of 1,149,344 single cells from the bone marrow of 263 newly diagnosed patients enrolled in the CoMMpass study and characterized immune and hematopoietic cell populations. Associating cell abundances and gene expression with disease progression revealed the presence of a proinflammatory immune senescence-associated secretory phenotype in rapidly progressing patients. Furthermore, signaling analyses suggested active intercellular communication involving APRIL-BCMA, potentially promoting tumor growth and survival. Finally, we demonstrate that integrating immune cell levels with genetic information can significantly improve patient stratification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA