Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 25(12): 2727-34, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26859133

RESUMO

The occurrence of natal homing in marine fish remains a fundamental question in fish ecology as its unequivocal demonstration requires tracking of individuals from fertilization to reproduction. Here, we provide evidence of long-distance natal homing (>1000 km) over more than 60 years in Atlantic cod (Gadus morhua), through genetic analysis of archived samples from marked and recaptured individuals. Using a high differentiation single-nucleotide polymorphism assay, we demonstrate that the vast majority of cod tagged in West Greenland and recaptured on Icelandic spawning grounds belonged to the Iceland offshore population, strongly supporting a hypothesis of homing. The high degree of natal fidelity observed provides the evolutionary settings for development of locally adapted populations in marine fish and emphasize the need to consider portfolio effects in marine fisheries management strategies.


Assuntos
Gadus morhua/genética , Genética Populacional , Comportamento de Retorno ao Território Vital , Sistemas de Identificação Animal , Migração Animal , Animais , DNA/análise , Pesqueiros , Técnicas de Genotipagem , Groenlândia , Islândia , Polimorfismo de Nucleotídeo Único , Reprodução
2.
Sci Rep ; 5: 15395, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26489934

RESUMO

Fishing and climate change impact the demography of marine fishes, but it is generally ignored that many species are made up of genetically distinct locally adapted populations that may show idiosyncratic responses to environmental and anthropogenic pressures. Here, we track 80 years of Atlantic cod (Gadus morhua) population dynamics in West Greenland using DNA from archived otoliths in combination with fish population and niche based modeling. We document how the interacting effects of climate change and high fishing pressure lead to dramatic spatiotemporal changes in the proportions and abundance of different genetic populations, and eventually drove the cod fishery to a collapse in the early 1970s. Our results highlight the relevance of fisheries management at the level of genetic populations under future scenarios of climate change.


Assuntos
Mudança Climática , DNA/genética , Gadus morhua/genética , Genética Populacional , Animais , Ecossistema , Pesqueiros , Dinâmica Populacional
3.
Evol Appl ; 6(4): 690-705, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23789034

RESUMO

Accurate prediction of species distribution shifts in the face of climate change requires a sound understanding of population diversity and local adaptations. Previous modeling has suggested that global warming will lead to increased abundance of Atlantic cod (Gadus morhua) in the ocean around Greenland, but the dynamics of earlier abundance fluctuations are not well understood. We applied a retrospective spatiotemporal population genomics approach to examine the temporal stability of cod population structure in this region and to search for signatures of divergent selection over a 78-year period spanning major demographic changes. Analyzing >900 gene-associated single nucleotide polymorphisms in 847 individuals, we identified four genetically distinct groups that exhibited varying spatial distributions with considerable overlap and mixture. The genetic composition had remained stable over decades at some spawning grounds, whereas complete population replacement was evident at others. Observations of elevated differentiation in certain genomic regions are consistent with adaptive divergence between the groups, indicating that they may respond differently to environmental variation. Significantly increased temporal changes at a subset of loci also suggest that adaptation may be ongoing. These findings illustrate the power of spatiotemporal population genomics for revealing biocomplexity in both space and time and for informing future fisheries management and conservation efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA