Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Cell ; 81(20): 4228-4242.e8, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34686315

RESUMO

Central to genotoxic responses is their ability to sense highly specific signals to activate the appropriate repair response. We previously reported that the activation of the ASCC-ALKBH3 repair pathway is exquisitely specific to alkylation damage in human cells. Yet the mechanistic basis for the selectivity of this pathway was not immediately obvious. Here, we demonstrate that RNA but not DNA alkylation is the initiating signal for this process. Aberrantly methylated RNA is sufficient to recruit ASCC, while an RNA dealkylase suppresses ASCC recruitment during chemical alkylation. In turn, recruitment of ASCC during alkylation damage, which is mediated by the E3 ubiquitin ligase RNF113A, suppresses transcription and R-loop formation. We further show that alkylated pre-mRNA is sufficient to activate RNF113A E3 ligase in vitro in a manner dependent on its RNA binding Zn-finger domain. Together, our work identifies an unexpected role for RNA damage in eliciting a specific response to genotoxins.


Assuntos
Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Núcleo Celular/enzimologia , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias/enzimologia , Proteínas Nucleares/metabolismo , Processamento Pós-Transcricional do RNA , RNA Neoplásico/metabolismo , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Núcleo Celular/genética , DNA Helicases/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Humanos , Metilação , Neoplasias/genética , Proteínas Nucleares/genética , Estruturas R-Loop , RNA Neoplásico/genética , Spliceossomos/genética , Spliceossomos/metabolismo , Transcrição Gênica , Ubiquitinação
2.
Genes Dev ; 30(7): 772-85, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26988419

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal form of cancer with few therapeutic options. We found that levels of the lysine methyltransferase SMYD2 (SET and MYND domain 2) are elevated in PDAC and that genetic and pharmacological inhibition of SMYD2 restricts PDAC growth. We further identified the stress response kinase MAPKAPK3 (MK3) as a new physiologic substrate of SMYD2 in PDAC cells. Inhibition of MAPKAPK3 impedes PDAC growth, identifying a potential new kinase target in PDAC. Finally, we show that inhibition of SMYD2 cooperates with standard chemotherapy to treat PDAC cells and tumors. These findings uncover a pivotal role for SMYD2 in promoting pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/enzimologia , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias Pancreáticas/enzimologia , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Inibidores Enzimáticos/farmacologia , Células HEK293 , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Estresse Fisiológico
3.
Molecules ; 28(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37630248

RESUMO

Cancer is one of the leading causes of death worldwide, and its incidence and mortality are increasing each year. Improved therapeutic strategies against cancer have progressed, but remain insufficient to invert this trend. Along with several other risk factors, abnormal genetic and epigenetic regulations play a critical role in the initiation of cellular transformation, as well as tumorigenesis. The epigenetic regulator UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is a multidomain protein with oncogenic abilities overexpressed in most cancers. Through the coordination of its multiple domains and other epigenetic key players, UHRF1 regulates DNA methylation and histone modifications. This well-coordinated dialogue leads to the silencing of tumor-suppressor genes (TSGs) and facilitates tumor cells' resistance toward anticancer drugs, ultimately promoting apoptosis escape and uncontrolled proliferation. Several studies have shown that the downregulation of UHRF1 with natural compounds in tumor cells induces the reactivation of various TSGs, inhibits cell growth, and promotes apoptosis. In this review, we discuss the underlying mechanisms and the potential of various natural and synthetic compounds that can inhibit/minimize UHRF1's oncogenic activities and/or its expression.


Assuntos
Carcinogênese , Transformação Celular Neoplásica , Humanos , Apoptose , Ciclo Celular , Epigênese Genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Ubiquitina-Proteína Ligases/genética
4.
Mol Cell ; 54(6): 901-903, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24950375

RESUMO

In this issue of Molecular Cell, Gelato et al. (2014) identify the signaling molecule phosphatidylinositol 5-phosphate (PI5P) as an allosteric regulator that determines the mode of chromatin binding for the DNA methylation maintenance factor Uhrf1. This work links nuclear lipids to chromatin signaling in the maintenance of DNA methylation and epigenetic regulation.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/química , Histonas/química , Fosfatos de Fosfatidilinositol/química , Humanos , Ubiquitina-Proteína Ligases
5.
Nature ; 510(7504): 283-7, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24847881

RESUMO

Deregulation of lysine methylation signalling has emerged as a common aetiological factor in cancer pathogenesis, with inhibitors of several histone lysine methyltransferases (KMTs) being developed as chemotherapeutics. The largely cytoplasmic KMT SMYD3 (SET and MYND domain containing protein 3) is overexpressed in numerous human tumours. However, the molecular mechanism by which SMYD3 regulates cancer pathways and its relationship to tumorigenesis in vivo are largely unknown. Here we show that methylation of MAP3K2 by SMYD3 increases MAP kinase signalling and promotes the formation of Ras-driven carcinomas. Using mouse models for pancreatic ductal adenocarcinoma and lung adenocarcinoma, we found that abrogating SMYD3 catalytic activity inhibits tumour development in response to oncogenic Ras. We used protein array technology to identify the MAP3K2 kinase as a target of SMYD3. In cancer cell lines, SMYD3-mediated methylation of MAP3K2 at lysine 260 potentiates activation of the Ras/Raf/MEK/ERK signalling module and SMYD3 depletion synergizes with a MEK inhibitor to block Ras-driven tumorigenesis. Finally, the PP2A phosphatase complex, a key negative regulator of the MAP kinase pathway, binds to MAP3K2 and this interaction is blocked by methylation. Together, our results elucidate a new role for lysine methylation in integrating cytoplasmic kinase-signalling cascades and establish a pivotal role for SMYD3 in the regulation of oncogenic Ras signalling.


Assuntos
Transformação Celular Neoplásica/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Lisina/metabolismo , MAP Quinase Quinase Quinase 2/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Proteína Oncogênica p21(ras)/metabolismo , Adenocarcinoma/enzimologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , MAP Quinase Quinase Quinase 2/química , MAP Quinase Quinase Quinases/química , Metilação , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Oncogênica p21(ras)/genética , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas A-raf/metabolismo , Transdução de Sinais
6.
Curr Opin Oncol ; 30(1): 30-37, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29076964

RESUMO

PURPOSE OF REVIEW: Despite better knowledge of its genetic basis, pancreatic cancer is still highly lethal with very few therapeutic options. In this review, we discuss the potential impact of epigenetic therapies, focusing on lysine methylation signaling and its implication in pancreatic cancer. RECENT FINDINGS: Protein lysine methylation, a key mechanism of posttranslational modifications of histone proteins, has emerged as a major cell signaling mechanism regulating physiologic and pathologic processes including cancer. This finely tuned and dynamic signaling mechanism is regulated by lysine methyltransferases (KMT), lysine demethylases (KDM) and signal transducers harboring methyl-binding domains. Recent evidence demonstrates that overexpression of cytoplasmic KMT and resulting enhanced lysine methylation is a reversible event that enhances oncogenic signaling through the Ras and Mitogen-Activated Protein Kinases pathway in pancreatic cancer, opening perspectives for new anticancer chemotherapeutics aimed at controlling these activities. SUMMARY: The development of potent and specific inhibitors of lysine methylation signaling may represent a hitherto largely unexplored avenue for new forms of targeted therapy in cancer, with great potential for yet hard-to-treat cancers such as pancreatic cancer.


Assuntos
Lisina/genética , Lisina/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Animais , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Metilação , Transdução de Sinais
7.
J Biol Chem ; 290(19): 12040-7, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25795785

RESUMO

The lysine methyltransferase (KMT) SETMAR is implicated in the response to and repair of DNA damage, but its molecular function is not clear. SETMAR has been associated with dimethylation of histone H3 lysine 36 (H3K36) at sites of DNA damage. However, SETMAR does not methylate H3K36 in vitro. This and the observation that SETMAR is not active on nucleosomes suggest that H3K36 methylation is not a physiologically relevant activity. To identify potential non-histone substrates, we utilized a strategy on the basis of quantitative proteomic analysis of methylated lysine. Our approach identified lysine 130 of the mRNA splicing factor snRNP70 as a SETMAR substrate in vitro, and we show that the enzyme primarily generates monomethylation at this position. Furthermore, we show that SETMAR methylates snRNP70 Lys-130 in cells. Because snRNP70 is a key early regulator of 5' splice site selection, our results suggest a model in which methylation of snRNP70 by SETMAR regulates constitutive and/or alternative splicing. In addition, the proteomic strategy described here is broadly applicable and is a promising route for large-scale mapping of KMT substrates.


Assuntos
Histona-Lisina N-Metiltransferase/química , Lisina/química , Proteômica , Ribonucleoproteína Nuclear Pequena U1/química , Linhagem Celular , Cromatografia Líquida , Células HEK293 , Histonas/química , Humanos , Nucleossomos/química , Peptídeos/química , Proteoma , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Especificidade por Substrato , Espectrometria de Massas em Tandem
8.
EMBO J ; 29(17): 2943-52, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20676058

RESUMO

In a subset of poorly differentiated and highly aggressive carcinoma, a chromosomal translocation, t(15;19)(q13;p13), results in an in-frame fusion of the double bromodomain protein, BRD4, with a testis-specific protein of unknown function, NUT (nuclear protein in testis). In this study, we show that, after binding to acetylated chromatin through BRD4 bromodomains, the NUT moiety of the fusion protein strongly interacts with and recruits p300, stimulates its catalytic activity, initiating cycles of BRD4-NUT/p300 recruitment and creating transcriptionally inactive hyperacetylated chromatin domains. Using a patient-derived cell line, we show that p300 sequestration into the BRD4-NUT foci is the principal oncogenic mechanism leading to p53 inactivation. Knockdown of BRD4-NUT released p300 and restored p53-dependent regulatory mechanisms leading to cell differentiation and apoptosis. This study demonstrates how the off-context activity of a testis-specific factor could markedly alter vital cellular functions and significantly contribute to malignant cell transformation.


Assuntos
Cromatina/metabolismo , Proteína p300 Associada a E1A/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Western Blotting , Células COS , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Microscopia de Fluorescência , Proteínas de Neoplasias , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Recombinação Genética , Fatores de Transcrição/genética , Translocação Genética , Proteína Supressora de Tumor p53/metabolismo
9.
Nat Commun ; 15(1): 4023, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740816

RESUMO

Abscission is the final stage of cytokinesis, which cleaves the intercellular bridge (ICB) connecting two daughter cells. Abscission requires tight control of the recruitment and polymerization of the Endosomal Protein Complex Required for Transport-III (ESCRT-III) components. We explore the role of post-translational modifications in regulating ESCRT dynamics. We discover that SMYD2 methylates the lysine 6 residue of human CHMP2B, a key ESCRT-III component, at the ICB, impacting the dynamic relocation of CHMP2B to sites of abscission. SMYD2 loss-of-function (genetically or pharmacologically) causes CHMP2B hypomethylation, delayed CHMP2B polymerization and delayed abscission. This is phenocopied by CHMP2B lysine 6 mutants that cannot be methylated. Conversely, SMYD2 gain-of-function causes CHMP2B hypermethylation and accelerated abscission, specifically in cells undergoing cytokinetic challenges, thereby bypassing the abscission checkpoint. Additional experiments highlight the importance of CHMP2B methylation beyond cytokinesis, namely during ESCRT-III-mediated HIV-1 budding. We propose that lysine methylation signaling fine-tunes the ESCRT-III machinery to regulate the timing of cytokinetic abscission and other ESCRT-III dependent functions.


Assuntos
Citocinese , Complexos Endossomais de Distribuição Requeridos para Transporte , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Humanos , Metilação , Células HeLa , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , HIV-1/metabolismo , HIV-1/genética , HIV-1/fisiologia , Lisina/metabolismo , Processamento de Proteína Pós-Traducional
10.
Cell Discov ; 10(1): 12, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296970

RESUMO

Malignant forms of breast cancer refractory to existing therapies remain a major unmet health issue, primarily due to metastatic spread. A better understanding of the mechanisms at play will provide better insights for alternative treatments to prevent breast cancer cell dispersion. Here, we identify the lysine methyltransferase SMYD2 as a clinically actionable master regulator of breast cancer metastasis. While SMYD2 is overexpressed in aggressive breast cancers, we notice that it is not required for primary tumor growth. However, mammary-epithelium specific SMYD2 ablation increases mouse overall survival by blocking the primary tumor cell ability to metastasize. Mechanistically, we identify BCAR3 as a genuine physiological substrate of SMYD2 in breast cancer cells. BCAR3 monomethylated at lysine K334 (K334me1) is recognized by a novel methyl-binding domain present in FMNLs proteins. These actin cytoskeleton regulators are recruited at the cell edges by the SMYD2 methylation signaling and modulate lamellipodia properties. Breast cancer cells with impaired BCAR3 methylation lose migration and invasiveness capacity in vitro and are ineffective in promoting metastases in vivo. Remarkably, SMYD2 pharmacologic inhibition efficiently impairs the metastatic spread of breast cancer cells, PDX and aggressive mammary tumors from genetically engineered mice. This study provides a rationale for innovative therapeutic prevention of malignant breast cancer metastatic progression by targeting the SMYD2-BCAR3-FMNL axis.

11.
Sci Adv ; 9(46): eadi5921, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976356

RESUMO

Aberrant activation of Ras/Raf/mitogen-activated protein kinase (MAPK) signaling is frequently linked to metastatic prostate cancer (PCa); therefore, the characterization of modulators of this pathway is critical for defining therapeutic vulnerabilities for metastatic PCa. The lysine methyltransferase SET and MYND domain 3 (SMYD3) methylates MAPK kinase kinase 2 (MAP3K2) in some cancers, causing enhanced activation of MAPK signaling. In PCa, SMYD3 is frequently overexpressed and associated with disease severity; however, its molecular function in promoting tumorigenesis has not been defined. We demonstrate that SMYD3 critically regulates tumor-associated phenotypes via its methyltransferase activity in PCa cells and mouse xenograft models. SMYD3-dependent methylation of MAP3K2 promotes epithelial-mesenchymal transition associated behaviors by altering the abundance of the intermediate filament vimentin. Furthermore, activation of the SMYD3-MAP3K2 signaling axis supports a positive feedback loop continually promoting high levels of SMYD3. Our data provide insight into signaling pathways involved in metastatic PCa and enhance understanding of mechanistic functions for SMYD3 to reveal potential therapeutic opportunities for PCa.


Assuntos
Neoplasias da Próstata , Masculino , Camundongos , Animais , Humanos , Neoplasias da Próstata/genética , Transdução de Sinais , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Metiltransferases/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , MAP Quinase Quinase Quinase 2/genética , MAP Quinase Quinase Quinase 2/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo
12.
bioRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37790557

RESUMO

Malignant forms of breast cancer refractory to existing therapies remain a major unmet health issue, primarily due to metastatic spread. A better understanding of the mechanisms at play will provide better insights for alternative treatments to prevent breast cancer cells dispersion. Here, we identify the lysine methyltransferase SMYD2 as a clinically actionable master regulator of breast cancer metastasis. While SMYD2 is overexpressed in aggressive breast cancers, we notice that it is not required for primary tumor growth. However, mammary-epithelium specific SMYD2 ablation increases mouse overall survival by blocking the primary tumor cells ability to metastasize. Mechanistically, we identify BCAR3 as a genuine physiological substrate of SMYD2 in breast cancer cells. BCAR3 monomethylated at lysine K334 (K334me1) is recognized by a novel methyl-binding domain present in FMNLs proteins. These actin cytoskeleton regulators are recruited at the cell edges by the SMYD2 methylation signaling and modulates lamellipodia properties. Breast cancer cells with impaired BCAR3 methylation loose migration and invasiveness capacity in vitro and are ineffective in promoting metastases in vivo . Remarkably, SMYD2 pharmacologic inhibition efficiently impairs the metastatic spread of breast cancer cells, PDX and aggressive mammary tumors from genetically engineered mice. This study provides a rationale for innovative therapeutic prevention of malignant breast cancer metastatic progression by targeting the SMYD2-BCAR3-FMNL axis.

13.
Cancers (Basel) ; 14(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35565363

RESUMO

In maturing sperm cells, a major genome re-organization takes place, which includes a global increase in the acetylation of histones prior to their replacement by protamines, the latter being responsible for the tight packaging of the male genome. Understanding the function of the oncogenic BRD4-NUT fusion protein in NUT carcinoma (NC) cells has proven to be essential in uncovering the mechanisms underlying histone hyperacetylation in spermatogenic cells. Indeed, these studies have revealed the mechanism by which a cooperation between BRD4, a bromodomain factor of the BET family, NUT, a normally testis-specific factor, and the histone acetyltransferase p300, induces the generation of hyperacetylated chromatin domains which are present in NC cells. The generation of Nut ko mice enabled us to demonstrate a genetic interaction between Nut and Brdt, encoding BRDT, a testis-specific BRD4-like factor. Indeed, in spermatogenic cells, NUT and p300 interact, which results in an increased acetylation of histone H4 at both positions K5 and K8. These two positions, when both acetylated, are specifically recognized by the first bromodomain of BRDT, which then mediates the removal of histone and their replacement by protamines. Taken together, these investigations show that the fusion of NUT to BRD4 in NUT Carcinoma cells reconstitutes, in somatic cells, a functional loop, which normally drives histone hyperacetylation and chromatin binding by a BET factor in spermatogenic cells.

14.
Nat Commun ; 13(1): 7759, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522330

RESUMO

Histone modifications are deposited by chromatin modifying enzymes and read out by proteins that recognize the modified state. BRD4-NUT is an oncogenic fusion protein of the acetyl lysine reader BRD4 that binds to the acetylase p300 and enables formation of long-range intra- and interchromosomal interactions. We here examine how acetylation reading and writing enable formation of such interactions. We show that NUT contains an acidic transcriptional activation domain that binds to the TAZ2 domain of p300. We use NMR to investigate the structure of the complex and found that the TAZ2 domain has an autoinhibitory role for p300. NUT-TAZ2 interaction or mutations found in cancer that interfere with autoinhibition by TAZ2 allosterically activate p300. p300 activation results in a self-organizing, acetylation-dependent feed-forward reaction that enables long-range interactions by bromodomain multivalent acetyl-lysine binding. We discuss the implications for chromatin organisation, gene regulation and dysregulation in disease.


Assuntos
Lisina , Proteínas Nucleares , Acetilação , Proteínas Nucleares/metabolismo , Lisina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina
15.
Cancer Discov ; 12(9): 2158-2179, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35819319

RESUMO

Small cell lung cancer (SCLC) is the most fatal form of lung cancer, with dismal survival, limited therapeutic options, and rapid development of chemoresistance. We identified the lysine methyltransferase SMYD3 as a major regulator of SCLC sensitivity to alkylation-based chemotherapy. RNF113A methylation by SMYD3 impairs its interaction with the phosphatase PP4, controlling its phosphorylation levels. This cross-talk between posttranslational modifications acts as a key switch in promoting and maintaining RNF113A E3 ligase activity, essential for its role in alkylation damage response. In turn, SMYD3 inhibition restores SCLC vulnerability to alkylating chemotherapy. Our study sheds light on a novel role of SMYD3 in cancer, uncovering this enzyme as a mediator of alkylation damage sensitivity and providing a rationale for small-molecule SMYD3 inhibition to improve responses to established chemotherapy. SIGNIFICANCE: SCLC rapidly becomes resistant to conventional chemotherapy, leaving patients with no alternative treatment options. Our data demonstrate that SMYD3 upregulation and RNF113A methylation in SCLC are key mechanisms that control the alkylation damage response. Notably, SMYD3 inhibition sensitizes cells to alkylating agents and promotes sustained SCLC response to chemotherapy. This article is highlighted in the In This Issue feature, p. 2007.


Assuntos
Proteínas de Ligação a DNA , Histona-Lisina N-Metiltransferase , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Alquilação , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Metilação , Fosforilação , Processamento de Proteína Pós-Traducional , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética
16.
Curr Protein Pept Sci ; 21(7): 655-674, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31894745

RESUMO

Protein lysine methylation is a functionally diverse post-translational modification involved in various major cellular processes. Lysine methylation can modulate proteins activity, stability, localization, and/or interaction, resulting in specific downstream signaling and biological outcomes. Lysine methylation is a dynamic and fine-tuned process, deregulation of which often leads to human pathologies. In particular, the lysine methylome and its associated signaling network can be linked to carcinogenesis and cancer progression. Histone modifications and chromatin regulation is a major aspect of lysine methylation importance, but increasing evidence suggests that a high relevance and impact of non-histone lysine methylation signaling has emerged in recent years. In this review, we draw an updated picture of the current scientific knowledge regarding non-histone lysine methylation signaling and its implication in physiological and pathological processes. We aim to demonstrate the significance of lysine methylation as a major and yet underestimated posttranslational modification, and to raise the importance of this modification in both epigenetic and cellular signaling by focusing on the observed activities of SET- and 7ß-strandcontaining human lysine methyltransferases. Recent evidence suggests that what has been observed so far regarding lysine methylation's implication in human pathologies is only the tip of the iceberg. Therefore, the exploration of the "methylome network" raises the possibility to use these enzymes and their substrates as promising new therapeutic targets for the development of future epigenetic and methyllysine signaling cancer treatments.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Histona Desmetilases/metabolismo , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias/enzimologia , Processamento de Proteína Pós-Traducional , Proteínas Cromossômicas não Histona/genética , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/genética , Histonas/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Lisina/metabolismo , Metilação , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais
18.
Med Sci (Paris) ; 24(8-9): 735-41, 2008.
Artigo em Francês | MEDLINE | ID: mdl-18789221

RESUMO

In healthy cells, several epigenetic mechanisms ensure structural and functional differentiation of the genome, and are necessary for the transcriptional silencing of most of the genome while a few genes, specific for each tissue type, are activated. Cell transformation disturbs this organization and induces the aberrant repression or activation of many genes. Whereas the transcriptional silencing of some critical cell regulators clearly contributes to cell malignant transformation, the oncogenic role of the illegitimate activation of tissue-specific genes in cancerous and pre-cancerous cells is still poorly known. This review aims to demonstrate the oncogenic potential of the illegitimate expression, in somatic cells, of genes, whose expression is normally restricted to male germ cells, encoding factors known as cancer testis or C/T, and particularly those involved in re-organizing the epigenome in these cells. The value of these genes, and of the factors they encode, in terms of cancer markers and promissing therapeutic targets will also be stressed.


Assuntos
Metilação de DNA/genética , Neoplasias/genética , Transformação Celular Neoplásica/genética , Epigênese Genética/genética , Humanos , Masculino , Espermatogênese/genética , Testículo/patologia
19.
Cell Rep ; 24(13): 3477-3487.e6, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30257209

RESUMO

Nuclear protein in testis (Nut) is a universal oncogenic driver in the highly aggressive NUT midline carcinoma, whose physiological function in male germ cells has been unclear. Here we show that expression of Nut is normally restricted to post-meiotic spermatogenic cells, where its presence triggers p300-dependent genome-wide histone H4 hyperacetylation, which is essential for the completion of histone-to-protamine exchange. Accordingly, the inactivation of Nut induces male sterility with spermatogenesis arrest at the histone-removal stage. Nut uses p300 and/or CBP to enhance acetylation of H4 at both K5 and K8, providing binding sites for the first bromodomain of Brdt, the testis-specific member of the BET family, which subsequently mediates genome-wide histone removal. Altogether, our data reveal the detailed molecular basis of the global histone hyperacetylation wave, which occurs before the final compaction of the male genome.


Assuntos
Histonas/metabolismo , Infertilidade Masculina/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Espermatozoides/metabolismo , Acetilação , Animais , Código das Histonas , Histonas/química , Masculino , Camundongos , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Ligação Proteica , Espermatogênese , Xenopus , Fatores de Transcrição de p300-CBP/metabolismo
20.
Sci Rep ; 7(1): 5418, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710461

RESUMO

The heat shock response is characterized by the transcriptional activation of both hsp genes and noncoding and repeated satellite III DNA sequences located at pericentric heterochromatin. Both events are under the control of Heat Shock Factor I (HSF1). Here we show that under heat shock, HSF1 recruits major cellular acetyltransferases, GCN5, TIP60 and p300 to pericentric heterochromatin leading to a targeted hyperacetylation of pericentric chromatin. Redistribution of histone acetylation toward pericentric region in turn directs the recruitment of Bromodomain and Extra-Terminal (BET) proteins BRD2, BRD3, BRD4, which are required for satellite III transcription by RNAP II. Altogether we uncover here a critical role for HSF1 in stressed cells relying on the restricted use of histone acetylation signaling over pericentric heterochromatin (HC).


Assuntos
Resposta ao Choque Térmico , Heterocromatina/genética , Transdução de Sinais/genética , Ativação Transcricional , Animais , Células COS , Proteínas de Ciclo Celular , Chlorocebus aethiops , Células HeLa , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Heterocromatina/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA