Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 366: 121911, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39032255

RESUMO

Groundwater resources are enormously affected by land use land cover (LULC) dynamics caused by increasing urbanisation, agricultural and household discharge as a result of global population growth. This study investigates the impact of decadal LULC changes in groundwater quality, human and ecological health from 2009 to 2021 in a diverse landscape, West Bengal, India. Using groundwater quality data from 479 wells in 2009 and 734 well in 2021, a recently proposed Water Pollution Index (WPI) was computed, and its geospatial distribution by a machine learning-based 'Empirical Bayesian Kriging' (EBK) tool manifested a decline in water quality since the number of excellent water category decreased from 30.5% to 28% and polluted water increased from 44% to 45%. ANOVA and Friedman tests revealed statistically significant differences (p < 0.0001) in year-wise water quality parameters as well as group comparisons for both years. Landsat 7 and 8 satellite images were used to classify the LULC types applying machine learning tools for both years, and were coupled with response surface methodology (RSM) for the first time, which revealed that the alteration of groundwater quality were attributed to LULC changes, e.g. WPI showed a positive correlation with built-up areas, village-vegetation cover, agricultural lands, and a negative correlation with surface water, barren lands, and forest cover. Expansion in built-up areas by 0.7%, and village-vegetation orchards by 2.3%, accompanied by a reduction in surface water coverage by 0.6%, and 2.4% in croplands caused a 1.5% drop in excellent water and 1% increase in polluted water category. However, ecological risks through the ecological risk index (ERI) exhibited a lower risk in 2021 attributed to reduced high-risk potential zones. This study highlights the potentiality in linking LULC and water quality changes using some advanced statistical tools like GIS and RSM for better management of water quality and landscape ecology.


Assuntos
Sistemas de Informação Geográfica , Água Subterrânea , Aprendizado de Máquina , Qualidade da Água , Água Subterrânea/análise , Índia , Monitoramento Ambiental/métodos , Teorema de Bayes , Humanos , Agricultura
2.
Asian-Australas J Anim Sci ; 33(9): 1520-1532, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32054189

RESUMO

OBJECTIVE: Due to rapid economic return, mixed crop-swine farming systems in Korea have become more intensive. Intensive farming practices often cause nutrient surpluses and lead to environmental pollution. Nutrient budgets can be used to evaluate the environmental impact and as a regulatory policy instrument for nutrient management. This study was conducted to select a nutrient budgeting approach applicable to the mixed crop-swine farms in Korea and suggest an effective manure treatment method to reduce on-farm nutrient production. METHODS: In this study, we compared current and ideal gross nutrient balance (GNB) approaches of Organisation for Economic Co-operation and Development and soil system budget (SSB) approach with reference to on-farm manure treatment processes. Data obtained from farm census and published literature were used to develop the farm nutrient budgets. RESULTS: The average nitrogen (N) and phosphorus (P) surpluses were approximately 11 times and over 7 times respectively higher in the GNB approaches than the SSB. After solid-liquid separation of manure, during liquid composting a change in aeration method from intermittent to continuous reduced the N and P loading about 50% and 47%, respectively. Although changing in solid composting method from turning only to turning+aeration improved the N removal efficiency by 30.5%, not much improvement in P removal efficiency was observed. CONCLUSION: Although the GNB approaches depict the impact of nutrients produced in the mixed crop-swine farms on the overall agricultural environment, the SSB approach shows the partitioning among different nutrient loss pathways and storage of nutrients within the soil system; thus, can help design sustainable nutrient management plans for the mixed cropswine farms. The study also suggests that continuous aeration for liquid composting and turning+aeration for solid composting can reduce nutrient loading to the soil.

3.
Environ Monit Assess ; 188(12): 692, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27888424

RESUMO

Excess sediment and nutrient export from agricultural fields with steep slopes is a major concern linked to surface water quality in Korea. In this study, the export of suspended sediment (SS), total nitrogen (TN), and total phosphorus (TP) and their event mean concentrations (EMCs) in surface runoff from a highland mixed land use (61% forested, 30% cropped, 9% other) watershed were quantified. In 2007, the Korean Ministry of Environment (MoE) declared the study area as a priority region for non-point source (NPS) pollution management and initiated various best management practices (BMPs) in the study watershed. SS, TN, and TP concentrations in Mandae Stream were monitored for 5 years (2009-2013) to evaluate the effectiveness of BMPs. Average EMCs for SS, TN, and TP were as high as 986, 3.4 and 0.8 mg/L, respectively. The agricultural export coefficients of agricultural land in the study watershed for SS, TN, and TP were 5611, 171, and 6.83 kg/ha/year, respectively. A comparison with results from other studies shows that both EMCs and agricultural export coefficients in the study watershed were much higher than most of the results reported for watersheds in other regions. The results show that sediment and nutrient export from intensive agriculture areas with steep slopes continue to be a major concern for the downstream reservoir, Lake Soyang. Remedial strategies should be directed towards controlling sources of SS, TN, and TP to improve downstream water quality in sloping highland agricultural areas in Korea.


Assuntos
Agricultura , Eutrofização , Sedimentos Geológicos/análise , Movimentos da Água , Poluentes Químicos da Água/análise , Qualidade da Água , Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise , República da Coreia
4.
Heliyon ; 10(9): e30326, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726140

RESUMO

With increasing demand for meat and dairy products, the volume of wastewater generated from the livestock industry has become a significant environmental concern. The treatment of livestock wastewater (LWW) is a challenging process that involves removing nutrients, organic matter, pathogens, and other pollutants from livestock manure and urine. In response to this challenge, researchers have developed and investigated different biological, physical, and chemical treatment technologies that perform better upon optimization. Optimization of LWW handling processes can help improve the efficacy and sustainability of treatment systems as well as minimize environmental impacts and associated costs. Response surface methodology (RSM) as an optimization approach can effectively optimize operational parameters that affect process performance. This review article summarizes the main steps of RSM, recent applications of RSM in LWW treatment, highlights the advantages and limitations of this technique, and provides recommendations for future research and practice, including its cost-effectiveness, accuracy, and ability to improve treatment efficiency.

5.
Plants (Basel) ; 12(22)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38005799

RESUMO

The presence of high levels of secondary metabolites in medicinal plants can significantly influence the progress of drug development. Here, we aimed to maximize phenolic extraction from Adenanthera pavonina L. stem bark using various solvents such as ethyl acetate, methanol, petroleum ether, and chloroform. A response surface method (RSM) with a central composite design (CCD) statistical technique was applied to optimize the extraction process, employing three important extracting parameters such as extraction time (h), temperature (°C), and solvent composition (% v/v of methanol/water) to obtain the highest phenolic content. Total phenolic content (TPC) and antioxidant activity (IC50 of extract's DPPH radical scavenging activity) were used as response variables to find the influence of these extracting parameters. Among the various solvents used, methanol extract showed the highest contents of phenolics and the maximum level of antioxidant activity with a lower IC50 value. The notable TPC and IC50 value of the extract's DPPH radical scavenging capacity were found to be 181.69 ± 0.20 mg GAE/g dry tissue and 60.13 ± 0.11 mg/mL, respectively, under the optimal conditions with a solvent composition of 71.61% (v/v) of methanol/water, extraction temperature of 42.52 °C, and extraction time of 24 h. The optimized extract of A. pavonina stem bark was further subjected to HPLC analysis, where six phenolic compounds, including coumarin, p-coumaric acid, chlorogenic acid, sinapic acid, gallic acid, and caffeic acid, were identified along with their respective quantities. Overall, the findings of this study uncover a low-cost analytical model for maximizing phenolic extraction from A. pavonina bark with enhanced antioxidant activity.

6.
Sci Total Environ ; 851(Pt 2): 158321, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037895

RESUMO

During anaerobic digestion (AD) of liquid dairy manure, organic nitrogen converts to ammonia nitrogen (NH3-N) and subsequently escalates the NH3-N concentrations in manure. Among different available NH3-N removal processes treating anaerobically digested liquid dairy manure (ADLDM), vacuum thermal stripping is reported to be an effective technique. However, none of the studies have performed multi-parameter optimization, which is of utmost significance in maximizing process efficiency. In this study, critical operational parameters for vacuum thermal stripping of NH3-N from ADLDM were optimized and modeled for the first time via integrating grey relational analysis (GRA)-based Taguchi design, response surface methodology (RSM), and RSM-artificial neural network (ANN). The initial experimental trials conducted using the GRA coupled with Taguchi L16 orthogonal array revealed the order of influence of the process parameters on NH3-N removal as vacuum pressure (kPa) > temperature (°C) > treatment time (min) > mixing speed (rpm) > pH. The values of the first three most influential operating parameters were then further optimized and modeled using RSM and RSM-ANN models. Under the optimized conditions (temperature: 69.6 °C, vacuum pressure: 43.5 kPa, and treatment time: 87.65 min), the NH3-N removal efficiency of 93.58 ± 0.59 % was experimentally observed and was in line with the RSM and RSM-ANN models' predicted values. While the RSM-ANN model showed a better prediction potential than did the RSM model when compared statistically. Moreover, the nutrient contents (nitrogen, N and sulfur, S) of the recovered NH3-N as ammonium sulfate ((NH4)2SO4) were in reasonable agreement with the market-available (NH4)2SO4 fertilizer. The results presented in this study provide important insights into improving the treatment process performance and will help design and operate future pilot- and full-scale vacuum thermal stripping processes in dairy farms.


Assuntos
Amônia , Esterco , Amônia/análise , Vácuo , Fertilizantes/análise , Sulfato de Amônio , Desnitrificação , Nitrogênio/análise , Enxofre
7.
Chemosphere ; 277: 130309, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34384179

RESUMO

In this study, the technical, economic and environmental attributes of a full-scale nutrient recovery process connected to the centralized swine wastewater treatment facility (CSWTF) were evaluated. The performance of the process was assessed by introducing influent to the recovery reactor from different components of the CSWTF such as sedimentation tank (swine wastewater) and biological treatment reactor (biologically oxidized material and supernatant of the biologically oxidized material). The results of technical performance assessment revealed that the O-P recovery (87.1-90.7%) and NH4-N removal (66.9-72.1%) efficiencies from the influent of biological treatment reactor were significantly higher than the influent from sedimentation tank (81.7 and 19.8%, respectively, p < 0.05). The economic evaluation elucidated that by increasing the treatment capacity of the recovery reactor from 30 m3/d to 100 m3/d, operating expenses could be covered through the commercialization of struvite, while it would take around seven years to get back the capital investment. Additional economic savings could also be possible when using the recovered struvite as a fertilizer raw material along with other environmental benefits. Considering the current farming practices in Korea, the complete recovery of O-P from CSWTFs as struvite could drop the soil phosphorus surplus by 40%, minimize the phosphatic fertilizer consumption by 6.4% and ultimately reduce CO2 equivalent emissions of 6522 tons/year in comparison to chemical fertilizer production. However, during the continuous operation of the full-scale nutrient recovery process, influent characteristics need to be incessantly monitored and adjusted to the optimum conditions to improve the economics of recovered products. Overall, the nutrient recovery process at full-scale not only solves the problem of treating highly polluted swine wastewater but also helps to ensure societal and environmental sustainability.


Assuntos
Compostos de Magnésio , Águas Residuárias , Animais , Estudos de Viabilidade , Nutrientes , Fosfatos , Fósforo , Estruvita , Suínos , Eliminação de Resíduos Líquidos
8.
Animals (Basel) ; 11(2)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530600

RESUMO

In this study, an attempt was made to develop a real-time control strategy using oxidation-reduction potential (ORP) and pH (mV) time profiles for the efficient operation of bio-liquor circulation system (BCS) in swine farms and its effectiveness in reducing odor emission through improving manure properties in the slurry pit was evaluated. The lab-scale BCS used in this study comprised a bioreactor and a slurry pit. The bioreactor was operated in a sequence of inflow of swine manure ® anoxic phase ® aerobic phase ® circulation to the slurry pit. The improvement in swine manure properties was elucidated by comparing the results of the BCS slurry pit (circulation type, CT) and conventional slurry pit (non-circulation type, NCT). The results revealed that the ORP time profile successfully detected the nitrate knee point (NKP) in the anoxic phase. However, it was less stable in detecting the nitrogen break point (NBP) in the aerobic phase. The pH (mV) time profile showed a more efficient detection of NBP. Compared to the NCT slurry pit, concentrations of ammonium nitrogen (NH4-N) and soluble total organic carbon (STOC) and other analyzed swine manure properties were much lower in the CT slurry pit. In the aspect of odor reduction, around 98.3% of NH3 was removed in the CT slurry pit. The real-time controlled BCS can overcome the drawbacks of fixed time-based BCS operation and therefore can be considered as a useful tool to reduce odor emission from intensive swine farming operations. However, further studies and refinement in control algorithms might be required prior to its large-scale application.

9.
Animals (Basel) ; 10(5)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408573

RESUMO

In this study, a novel treatment approach combining biological treatment, struvite crystallization, and electrochemical treatment was developed and its efficiency for the simultaneous removal of pollutants and recovery of nutrients from high strength swine wastewater (SWW) was verified. For all the parameters, maximum removal efficiencies in the lab-scale test were obtained in the range of 93.0-98.7% except for total solids (TS) (79.4%). Farm-scale process showed overall removal efficiencies for total nitrogen (TN), total phosphorus (TP), soluble total organic carbon (sTOC), and color as 94.5%, 67.0%, 96.1%, and 98.9%, respectively, while TS, suspended solids (SS), ammonium nitrogen (NH4-N), and ortho-phosphate (O-P) concentrations were reduced by 91.5%, 99.6%, 98.6%, and 91.9%, respectively. Moreover, the struvite recovered from SWW showed heavy metal concentrations within the range of the Korean standard for fertilizers and feedstocks and thus, suggesting its potential application as fertilizer and in animal feed production. Using the proposed process, the SWW was converted to liquid compost as a quick-acting fertilizer, struvite as a slow-release fertilizer, and the decolorized and disinfected effluent after electrochemical treatment was safe for discharge according to Korean standard. Therefore, the novel integrated treatment process used in this study can be considered as a solution for SWW management and for the simultaneous removal and recycling of nutrients (N and P).

10.
Animals (Basel) ; 9(10)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614549

RESUMO

Apart from using as fertilizer for plants, the application of struvite may be expanded to animal feed industries through proper pre-treatment. This study aimed to investigate the safety and efficacy of using pre-treated struvite (microwave irradiated struvite (MS) and incinerated struvite (IS)) in animal feeds. For safety assessment, an in vivo toxicity experiment using thirty female Sprague Dawley rats (average body weight (BW) of 200 ± 10 g) was conducted. The rats were randomly divided into five groups, including a control. Based on the BW, MS and IS were applied daily by oral administration with 1 and 10 mg kg-1-BW (MS1 and MS10; IS1 and IS10) using dimethyl sulfoxide (DMSO) as a vehicle. A series of jar tests were conducted for four hours to check the solubility of the MS and IS at different pH (pH 2, 4, and 5) and compared to a commercial P source (monocalcium phosphate, MCP, control). The toxicity experiment results showed no significant differences among the treatments in BW and organ (liver, kidney, heart, and lung) weight of rats (p > 0.05). There were no adverse effects on blood parameters and the histopathological examination showed no inflammation in the organ tissues in MS and IS treated groups compared to the control. In an in vitro solubility test, no significant difference was observed in ortho-phosphate (O-P) solubility from the MCP and MS at pH 2 and 4 (p > 0.05), while O-P solubility from MS at pH 5 to 7 was higher than MCP and found to be significantly different (p < 0.05). O-P solubility from IS was the lowest among the treatments and significantly different from MCP and MS in all the experiments (p < 0.05). The results of this study not only suggest that the struvite pre-treated as MS could be a potential alternative source of P in animal feed but also motivate further studies with more stringent designs to better examine the potential of struvite application in diverse fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA