Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Can J Physiol Pharmacol ; 97(7): 589-599, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30854877

RESUMO

The last 20 years witnessed the emergence of the thymosin ß4 (Tß4)-N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) pathway as a new source of future therapeutic tools to treat cardiovascular and renal diseases. In this review article, we attempted to shed light on the numerous experimental findings pertaining to the many promising cardiovascular therapeutic avenues for Tß4 and (or) its N-terminal derivative, Ac-SDKP. Specifically, Ac-SDKP is endogenously produced from the 43-amino acid Tß4 by 2 successive enzymes, meprin α and prolyl oligopeptidase. We also discussed the possible mechanisms involved in the Tß4-Ac-SDKP-associated cardiovascular biological effects. In infarcted myocardium, Tß4 and Ac-SDKP facilitate cardiac repair after infarction by promoting endothelial cell migration and myocyte survival. Additionally, Tß4 and Ac-SDKP have antifibrotic and anti-inflammatory properties in the arteries, heart, lungs, and kidneys, and stimulate both in vitro and in vivo angiogenesis. The effects of Tß4 can be mediated directly through a putative receptor (Ku80) or via its enzymatically released N-terminal derivative Ac-SDKP. Despite the localization and characterization of Ac-SDKP binding sites in myocardium, more studies are needed to fully identify and clone Ac-SDKP receptors. It remains promising that Ac-SDKP or its degradation-resistant analogs could serve as new therapeutic tools to treat cardiac, vascular, and renal injury and dysfunction to be used alone or in combination with the already established pharmacotherapy for cardiovascular diseases.


Assuntos
Sistema Cardiovascular/metabolismo , Oligopeptídeos/metabolismo , Timosina/metabolismo , Animais , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Sistema Cardiovascular/citologia , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/patologia , Humanos
2.
Can J Physiol Pharmacol ; 97(8): 753-765, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30998852

RESUMO

Myocardial infarction (MI) in mice results in cardiac rupture at 4-7 days after MI, whereas cardiac fibrosis and dysfunction occur later. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) has anti-inflammatory, anti-fibrotic, and pro-angiogenic properties. We hypothesized that Ac-SDKP reduces cardiac rupture and adverse cardiac remodeling, and improves function by promoting angiogenesis and inhibiting detrimental reactive fibrosis and inflammation after MI. C57BL/6J mice were subjected to MI and treated with Ac-SDKP (1.6 mg/kg per day) for 1 or 5 weeks. We analyzed (1) intercellular adhesion molecule-1 (ICAM-1) expression; (2) inflammatory cell infiltration and angiogenesis; (3) gelatinolytic activity; (4) incidence of cardiac rupture; (5) p53, the endoplasmic reticulum stress marker CCAAT/enhancer binding protein homology protein (CHOP), and cardiomyocyte apoptosis; (6) sarcoplasmic reticulum Ca2+ ATPase (SERCA2) expression; (7) interstitial collagen fraction and capillary density; and (8) cardiac remodeling and function. Acutely, Ac-SDKP reduced cardiac rupture, decreased ICAM-1 expression and the number of infiltrating macrophages, decreased gelatinolytic activity, p53 expression, and myocyte apoptosis, but increased capillary density in the infarction border. Chronically, Ac-SDKP improved cardiac structures and function, reduced CHOP expression and interstitial collagen fraction, and preserved myocardium SERCA2 expression. Thus, Ac-SDKP decreased cardiac rupture, ameliorated adverse cardiac remodeling, and improved cardiac function after MI, likely through preserved SERCA2 expression and inhibition of endoplasmic reticulum stress.


Assuntos
Cardiotônicos/farmacologia , Insuficiência Cardíaca/prevenção & controle , Traumatismos Cardíacos/prevenção & controle , Coração/efeitos dos fármacos , Oligopeptídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Remodelamento Atrial/efeitos dos fármacos , Capilares/efeitos dos fármacos , Capilares/metabolismo , Colágeno/metabolismo , Eletrocardiografia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibrose , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Remodelação Ventricular/efeitos dos fármacos
3.
Am J Physiol Renal Physiol ; 310(10): F1026-34, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26962108

RESUMO

N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a natural tetrapeptide with anti-inflammatory and antifibrotic properties. Previously, we have shown that prolyl oligopeptidase (POP) is involved in the Ac-SDKP release from thymosin-ß4 (Tß4). However, POP can only hydrolyze peptides shorter than 30 amino acids, and Tß4 is 43 amino acids long. This indicates that before POP hydrolysis takes place, Tß4 is hydrolyzed by another peptidase that releases NH2-terminal intermediate peptide(s) with fewer than 30 amino acids. Our peptidase database search pointed out meprin-α metalloprotease as a potential candidate. Therefore, we hypothesized that, prior to POP hydrolysis, Tß4 is hydrolyzed by meprin-α. In vitro, we found that the incubation of Tß4 with both meprin-α and POP released Ac-SDKP, whereas no Ac-SDKP was released when Tß4 was incubated with either meprin-α or POP alone. Incubation of Tß4 with rat kidney homogenates significantly released Ac-SDKP, which was blocked by the meprin-α inhibitor actinonin. In addition, kidneys from meprin-α knockout (KO) mice showed significantly lower basal Ac-SDKP amount, compared with wild-type mice. Kidney homogenates from meprin-α KO mice failed to release Ac-SDKP from Tß4. In vivo, we observed that rats treated with the ACE inhibitor captopril increased plasma concentrations of Ac-SDKP, which was inhibited by the coadministration of actinonin (vehicle, 3.1 ± 0.2 nmol/l; captopril, 15.1 ± 0.7 nmol/l; captopril + actinonin, 6.1 ± 0.3 nmol/l; P < 0.005). Similar results were obtained with urinary Ac-SDKP after actinonin treatment. We conclude that release of Ac-SDKP from Tß4 is mediated by successive hydrolysis involving meprin-α and POP.


Assuntos
Rim/metabolismo , Metaloendopeptidases/metabolismo , Oligopeptídeos/metabolismo , Serina Endopeptidases/metabolismo , Timosina/metabolismo , Animais , Pressão Sanguínea , Captopril , Ácidos Hidroxâmicos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prolil Oligopeptidases , Distribuição Aleatória , Ratos Sprague-Dawley
4.
Am J Physiol Heart Circ Physiol ; 310(9): H1176-83, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26945075

RESUMO

N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a naturally occurring tetrapeptide that prevents inflammation and fibrosis in hypertension and other cardiovascular diseases. We previously showed that, in angiotensin II-induced hypertension, Ac-SDKP decreased the activation of nuclear transcription factor NF-κB, whereas, in experimental autoimmune myocarditis and hypertension animal models, it also reduced the expression of endothelial leukocyte adhesion molecule ICAM-1. However, the mechanisms by which Ac-SDKP downregulated ICAM-1 expression are still unclear. TNF-α is a proinflammatory cytokine that induces ICAM-1 expression in various cell types via TNF receptor 1 and activation of the classical NF-κB pathway. We hypothesized that in endothelial cells Ac-SDKP suppresses TNF-α-induced ICAM-1 expression by decreasing IKK phosphorylation that as a consequence leads to a decrease of IκB phosphorylation and NF-κB activation. To test this hypothesis, human coronary artery endothelial cells were treated with Ac-SDKP and then stimulated with TNF-α. We found that TNF-α-induced ICAM-1 expression was significantly decreased by Ac-SDKP in a dose-dependent manner. Ac-SDKP also decreased TNF-α-induced NF-κB translocation from cytosol to nucleus, as assessed by electrophoretic mobility shift assay, which correlated with a decrease in IκB phosphorylation. In addition, we found that Ac-SDKP decreased TNF-α-induced IKK phosphorylation and IKK-ß expression. However, Ac-SDKP had no effect on TNF-α-induced phosphorylation of p38 MAP kinase or ERK. Thus we conclude that Ac-SDKP inhibition of TNF-α activation of canonical, i.e., IKK-ß-dependent, NF-κB pathway and subsequent decrease in ICAM-1 expression is achieved via inhibition of IKK-ß.


Assuntos
Anti-Inflamatórios/farmacologia , Células Endoteliais/efeitos dos fármacos , Quinase I-kappa B/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , NF-kappa B/metabolismo , Oligopeptídeos/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Células Endoteliais/enzimologia , Humanos , Fosforilação , Transdução de Sinais , Regulação para Cima
5.
Am J Physiol Renal Physiol ; 308(10): F1146-54, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25740596

RESUMO

Systemic lupus erythematosus is an autoimmune disease characterized by the development of auto antibodies against a variety of self-antigens and deposition of immune complexes that lead to inflammation, fibrosis, and end-organ damage. Up to 60% of lupus patients develop nephritis and renal dysfunction leading to kidney failure. N-acetyl-seryl-aspartyl-lysyl-proline, i.e., Ac-SDKP, is a natural tetrapeptide that in hypertension prevents inflammation and fibrosis in heart, kidney, and vasculature. In experimental autoimmune myocarditis, Ac-SDKP prevents cardiac dysfunction by decreasing innate and adaptive immunity. It has also been reported that Ac-SDKP ameliorates lupus nephritis in mice. We hypothesize that Ac-SDKP prevents lupus nephritis in mice by decreasing complement C5-9, proinflammatory cytokines, and immune cell infiltration. Lupus mice treated with Ac-SDKP for 20 wk had significantly lower renal levels of macrophage and T cell infiltration and proinflammatory chemokine/cytokines. In addition, our data demonstrate for the first time that in lupus mouse Ac-SDKP prevented the increase in complement C5-9, RANTES, MCP-5, and ICAM-1 kidney expression and it prevented the decline of glomerular filtration rate. Ac-SDKP-treated lupus mice had a significant improvement in renal function and lower levels of glomerular damage. Ac-SDKP had no effect on the production of autoantibodies. The protective Ac-SDKP effect is most likely achieved by targeting the expression of proinflammatory chemokines/cytokines, ICAM-1, and immune cell infiltration in the kidney, either directly or via C5-9 proinflammatory arm of complement system.


Assuntos
Modelos Animais de Doenças , Lúpus Eritematoso Sistêmico/complicações , Nefrite Lúpica/etiologia , Nefrite Lúpica/prevenção & controle , Oligopeptídeos/uso terapêutico , Animais , Movimento Celular , Proteínas do Sistema Complemento/metabolismo , Citocinas/metabolismo , Feminino , Taxa de Filtração Glomerular/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Nefrite Lúpica/metabolismo , Camundongos , Camundongos Endogâmicos MRL lpr , Oligopeptídeos/farmacologia , Linfócitos T/patologia
6.
Stroke ; 45(4): 1108-14, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24549864

RESUMO

BACKGROUND AND PURPOSE: N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), an endogenously produced circulating peptide in humans and rodents, exerts anti-inflammatory and cardioprotective activities in various cardiovascular diseases. METHODS: The present study evaluated the neuroprotective effect of AcSDKP alone and in combination with thrombolytic therapy in a rat model of embolic focal cerebral ischemia. RESULTS: We found that treatment with AcSDKP alone at 1 hour or the combination treatment with AcSDKP and tissue plasminogen activator (tPA) at 4 hours after stroke onset substantially increased AcSDKP levels in plasma and cerebrospinal fluid and robustly reduced infarct volume and neurological deficits, without increasing the incidence of brain hemorrhage compared with ischemic rats treated with saline, AcSDKP alone at 4 hours, and tPA alone at 4 hours. Moreover, the combination treatment considerably reduced the density of nuclear transcription factor-κB (NF-κB), transforming growth factor ß (TGF-ß), and plasminogen activator inhibitor-1 (PAI-1) positive cerebral blood vessels in the ischemic brain, all of which were associated with reduced microvascular fibrin extravasation and platelet accumulation compared with tPA monotherapy. In vitro, AcSDKP blocked fibrin-elevated TGF-ß1, PAI-1, and NF-κB proteins in primary human brain microvascular endothelial cells. CONCLUSIONS: Our data indicate that AcSDKP passes the blood-brain barrier, and that treatment of acute stroke with AcSDKP either alone at 1 hour or in combination with tPA at 4 hours of the onset of stroke is effective to reduce ischemic cell damage in a rat model of embolic stroke. Inactivation of TGF-ß and NF-κB signaling by AcSDKP in the neurovascular unit may underlie the neuroprotective effect of AcSDKP.


Assuntos
Células Endoteliais/efeitos dos fármacos , Embolia Intracraniana/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Oligopeptídeos/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Ativador de Plasminogênio Tecidual/farmacologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Modelos Animais de Doenças , Quimioterapia Combinada , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fibrinolíticos/farmacologia , Inibidores do Crescimento/farmacologia , Humanos , Embolia Intracraniana/metabolismo , Embolia Intracraniana/patologia , Imageamento por Ressonância Magnética , Masculino , NF-kappa B/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Cultura Primária de Células , Ratos , Ratos Wistar , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Fator de Crescimento Transformador beta1/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 307(5): H741-51, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25015963

RESUMO

Thymosin-ß4 (Tß4) promotes cell survival, angiogenesis, and tissue regeneration and reduces inflammation. Cardiac rupture after myocardial infarction (MI) is mainly the consequence of excessive regional inflammation, whereas cardiac dysfunction after MI results from a massive cardiomyocyte loss and cardiac fibrosis. It is possible that Tß4 reduces the incidence of cardiac rupture post-MI via anti-inflammatory actions and that it decreases adverse cardiac remodeling and improves cardiac function by promoting cardiac cell survival and cardiac repair. C57BL/6 mice were subjected to MI and treated with either vehicle or Tß4 (1.6 mg·kg(-1)·day(-1) ip via osmotic minipump) for 7 days or 5 wk. Mice were assessed for 1) cardiac remodeling and function by echocardiography; 2) inflammatory cell infiltration, capillary density, myocyte apoptosis, and interstitial collagen fraction histopathologically; 3) gelatinolytic activity by in situ zymography; and 4) expression of ICAM-1 and p53 by immunoblot analysis. Tß4 reduced cardiac rupture that was associated with a decrease in the numbers of infiltrating inflammatory cells and apoptotic myocytes, a decrease in gelatinolytic activity and ICAM-1 and p53 expression, and an increase in the numbers of CD31-positive cells. Five-week treatment with Tß4 ameliorated left ventricular dilation, improved cardiac function, markedly reduced interstitial collagen fraction, and increased capillary density. In a murine model of acute MI, Tß4 not only decreased mortality rate as a result of cardiac rupture but also significantly improved cardiac function after MI. Thus, the use of Tß4 could be explored as an alternative therapy in preventing cardiac rupture and restoring cardiac function in patients with MI.


Assuntos
Ruptura Cardíaca Pós-Infarto/prevenção & controle , Timosina/uso terapêutico , Função Ventricular Esquerda , Animais , Apoptose , Ecocardiografia , Ruptura Cardíaca Pós-Infarto/metabolismo , Ruptura Cardíaca Pós-Infarto/fisiopatologia , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Timosina/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Clin Sci (Lond) ; 126(1): 85-94, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23834332

RESUMO

We have reported previously that Ac-SDKP (N-acetyl-seryl-aspartyl-lysyl-proline) reduces fibrosis and inflammation (in macrophages and mast cells). However, it is not known whether Ac-SDKP decreases collagen cross-linking and lymphocyte infiltration; lymphocytes modulate both collagen cross-linking and ECM (extracellular matrix) formation in hypertension. Thus we hypothesized that (i) in AngII (angiotensin II)-induced hypertension, Ac-SDKP prevents increases in cross-linked and total collagen by down-regulating LOX (lysyl oxidase), the enzyme responsible for cross-linking, and (ii) these effects are associated with decreased pro-fibrotic cytokine TGFß (transforming growth factor ß) and the pro-inflammatory transcription factor NF-κB (nuclear factor κB) and CD4+/CD8+ lymphocyte infiltration. We induced hypertension in rats by infusing AngII either alone or combined with Ac-SDKP for 3 weeks. Whereas Ac-SDKP failed to lower BP (blood pressure) or LV (left ventricular) hypertrophy, it did prevent AngII-induced increases in (i) cross-linked and total collagen, (ii) LOX mRNA expression and LOXL1 (LOX-like 1) protein, (iii) TGFß expression, (iv) nuclear translocation of NF-κB, (v) CD4+/CD8+ lymphocyte infiltration, and (vi) CD68+ macrophages infiltration. In addition, we found a positive correlation between CD4+ infiltration and LOXL1 expression. In conclusion, the effect of Ac-SDKP on collagen cross-linking and total collagen may be due to reduced TGFß1, LOXL1, and lymphocyte and macrophage infiltration, and its effect on inflammation could be due to lower NF-κB.


Assuntos
Colágeno/efeitos dos fármacos , Hipertensão/complicações , Inflamação/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Aminoácido Oxirredutases/metabolismo , Angiotensina II , Animais , Peso Corporal/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Cardiomegalia/induzido quimicamente , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/imunologia , Inflamação/etiologia , Inflamação/imunologia , Inflamação/metabolismo , Pulmão/patologia , Masculino , NF-kappa B/metabolismo , Oligopeptídeos/farmacologia , Oligopeptídeos/urina , Tamanho do Órgão/efeitos dos fármacos , Proteína-Lisina 6-Oxidase/biossíntese , Proteína-Lisina 6-Oxidase/genética , RNA Mensageiro/genética , Ratos , Ratos Endogâmicos Lew , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
9.
Front Pharmacol ; 15: 1352222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495093

RESUMO

Inflammation and cardiac fibrosis are prevalent pathophysiologic conditions associated with hypertension, cardiac remodeling, and heart failure. Endoplasmic reticulum (ER) stress triggers the cells to activate unfolded protein responses (UPRs) and upregulate the ER stress chaperon, enzymes, and downstream transcription factors to restore normal ER function. The mechanisms that link ER stress-induced UPRs upregulation and NF-κB activation that results in cardiac inflammation and collagen production remain elusive. N-Acetyl-Ser-Asp-Lys-Pro (Ac-SDKP), a natural tetrapeptide that negatively regulates inflammation and fibrosis, has been reported. Whether it can inhibit ER stress-induced collagen production in cardiac fibroblasts remains unclear. Thus, we hypothesized that Ac-SDKP attenuates ER stress-stimulated collagen production in cardiac fibroblasts by inhibiting CHOP-mediated NF-κB expression. We aimed to study whether Ac-SDKP inhibits tunicamycin (TM)-induced ER stress signaling, NF-κB signaling, the release of inflammatory cytokine interleukin-6, and collagen production in human cardiac fibroblasts (HCFs). HCFs were pre-treated with Ac-SDKP (10 nM) and then stimulated with TM (0.25 µg/mL). We found that Ac-SDKP inhibits TM-induced collagen production by attenuating ER stress-induced UPRs upregulation and CHOP/NF-κB transcriptional signaling pathways. CHOP deletion by specific shRNA maintains the inhibitory effect of Ac-SDKP on NF-κB and type-1 collagen (Col-1) expression at both protein and mRNA levels. Attenuating ER stress-induced UPR sensor signaling by Ac-SDKP seems a promising therapeutic strategy to combat detrimental cardiac inflammation and fibrosis.

10.
Heliyon ; 10(11): e31799, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38882290

RESUMO

Endothelial dysfunction and inflammation are clinically significant risk factors for cardiovascular diseases in hypertension. Although immune cells play a role in hypertension, the impact of plasmacytoid dendritic cells in established renovascular hypertension-induced cardiovascular complications is not fully understood. We investigated plasmacytoid dendritic cells' contribution to arterial endothelial dysfunction and inflammation in renovascular hypertension. A two-kidney one-clip (2K1C) model for four weeks in both male and female mice was used to induce renovascular hypertension. We treated mice with or without anti-PDCA-1 antibodies for one week to deplete the plasmacytoid dendritic cells. Renovascular hypertension causes cardiac hypertrophy, lung edema, and microvascular endothelial dysfunction associated with inflammation induction in mice. Moreover, renovascular hypertension affects the profile of immune cells, including dendritic cells and macrophages, with variations between male and female mice. Interestingly, the depletion of plasmacytoid dendritic cells significantly reduces blood pressure, cardiac hypertrophy, lung edema, inflammation, and oxidative stress and improves microvascular endothelial function via the endoplasmic reticulum (ER) stress, autophagy, and mTOR-dependent mechanisms. Plasmacytoid dendritic cells significantly contribute to the development of cardiovascular complications in renovascular hypertension by modulating immune cells, inflammation, oxidative stress, and ER stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA