Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 33(7): 1323-1340, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35581010

RESUMO

BACKGROUND: Impaired mineral ion metabolism is a hallmark of CKD-metabolic bone disorder. It can lead to pathologic vascular calcification and is associated with an increased risk of cardiovascular mortality. Loss of calcium-sensing receptor (CaSR) expression in vascular smooth muscle cells exacerbates vascular calcification in vitro. Conversely, vascular calcification can be reduced by calcimimetics, which function as allosteric activators of CaSR. METHODS: To determine the role of the CaSR in vascular calcification, we characterized mice with targeted Casr gene knockout in vascular smooth muscle cells ( SM22α CaSR Δflox/Δflox ). RESULTS: Vascular smooth muscle cells cultured from the knockout (KO) mice calcified more readily than those from control (wild-type) mice in vitro. However, mice did not show ectopic calcifications in vivo but they did display a profound mineral ion imbalance. Specifically, KO mice exhibited hypercalcemia, hypercalciuria, hyperphosphaturia, and osteopenia, with elevated circulating fibroblast growth factor 23 (FGF23), calcitriol (1,25-D3), and parathyroid hormone levels. Renal tubular α-Klotho protein expression was increased in KO mice but vascular α-Klotho protein expression was not. Altered CaSR expression in the kidney or the parathyroid glands could not account for the observed phenotype of the KO mice. CONCLUSIONS: These results suggest that, in addition to CaSR's established role in the parathyroid-kidney-bone axis, expression of CaSR in vascular smooth muscle cells directly contributes to total body mineral ion homeostasis.


Assuntos
Receptores de Detecção de Cálcio , Calcificação Vascular , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Klotho , Camundongos , Camundongos Knockout , Minerais/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Calcificação Vascular/etiologia
2.
Pharmacol Rev ; 72(3): 558-604, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32467152

RESUMO

The calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor that responds to multiple endogenous agonists and allosteric modulators, including divalent and trivalent cations, L-amino acids, γ-glutamyl peptides, polyamines, polycationic peptides, and protons. The CaSR plays a critical role in extracellular calcium (Ca2+ o) homeostasis, as demonstrated by the many naturally occurring mutations in the CaSR or its signaling partners that cause Ca2+ o homeostasis disorders. However, CaSR tissue expression in mammals is broad and includes tissues unrelated to Ca2+ o homeostasis, in which it, for example, regulates the secretion of digestive hormones, airway constriction, cardiovascular effects, cellular differentiation, and proliferation. Thus, although the CaSR is targeted clinically by the positive allosteric modulators (PAMs) cinacalcet, evocalcet, and etelcalcetide in hyperparathyroidism, it is also a putative therapeutic target in diabetes, asthma, cardiovascular disease, and cancer. The CaSR is somewhat unique in possessing multiple ligand binding sites, including at least five putative sites for the "orthosteric" agonist Ca2+ o, an allosteric site for endogenous L-amino acids, two further allosteric sites for small molecules and the peptide PAM, etelcalcetide, and additional sites for other cations and anions. The CaSR is promiscuous in its G protein-coupling preferences, and signals via Gq/11, Gi/o, potentially G12/13, and even Gs in some cell types. Not surprisingly, the CaSR is subject to biased agonism, in which distinct ligands preferentially stimulate a subset of the CaSR's possible signaling responses, to the exclusion of others. The CaSR thus serves as a model receptor to study natural bias and allostery. SIGNIFICANCE STATEMENT: The calcium-sensing receptor (CaSR) is a complex G protein-coupled receptor that possesses multiple orthosteric and allosteric binding sites, is subject to biased signaling via several different G proteins, and has numerous (patho)physiological roles. Understanding the complexities of CaSR structure, function, and biology will aid future drug discovery efforts seeking to target this receptor for a diversity of diseases. This review summarizes what is known to date regarding key structural, pharmacological, and physiological features of the CaSR.


Assuntos
Receptores de Detecção de Cálcio/agonistas , Receptores de Detecção de Cálcio/antagonistas & inibidores , Animais , Sítios de Ligação , Proteínas de Ligação ao GTP/metabolismo , Humanos , Modelos Moleculares , Receptores de Detecção de Cálcio/química , Receptores de Detecção de Cálcio/metabolismo , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/farmacologia
3.
Eur Respir J ; 60(2)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35058244

RESUMO

In this review article we present the evidence to date supporting the role of the calcium-sensing receptor (CaSR) as a key, pluripotential molecular trigger for asthma and speculate on the likely benefits of topical therapy of asthma with negative allosteric modulators of the CaSR: calcilytics.


Assuntos
Asma , Receptores de Detecção de Cálcio , Asma/tratamento farmacológico , Cálcio , Humanos
4.
J Pharmacol Exp Ther ; 376(1): 51-63, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33115824

RESUMO

Asthma is still an incurable disease, and there is a recognized need for novel small-molecule therapies for people with asthma, especially those poorly controlled by current treatments. We previously demonstrated that calcium-sensing receptor (CaSR) negative allosteric modulators (NAMs), calcilytics, uniquely suppress both airway hyperresponsiveness (AHR) and inflammation in human cells and murine asthma surrogates. Here we assess the feasibility of repurposing four CaSR NAMs, which were originally developed for oral therapy for osteoporosis and previously tested in the clinic as a novel, single, and comprehensive topical antiasthma therapy. We address the hypotheses, using murine asthma surrogates, that topically delivered CaSR NAMs 1) abolish AHR; 2) are unlikely to cause unwanted systemic effects; 3) are suitable for topical application; and 4) inhibit airway inflammation to the same degree as the current standard of care, inhaled corticosteroids, and, furthermore, inhibit airway remodeling. All four CaSR NAMs inhibited poly-L-arginine-induced AHR in naïve mice and suppressed both AHR and airway inflammation in a murine surrogate of acute asthma, confirming class specificity. Repeated exposure to inhaled CaSR NAMs did not alter blood pressure, heart rate, or serum calcium concentrations. Optimal candidates for repurposing were identified based on anti-AHR/inflammatory activities, pharmacokinetics/pharmacodynamics, formulation, and micronization studies. Whereas both inhaled CaSR NAMs and inhaled corticosteroids reduced airways inflammation, only the former prevented goblet cell hyperplasia in a chronic asthma model. We conclude that inhaled CaSR NAMs are likely a single, safe, and effective topical therapy for human asthma, abolishing AHR, suppressing airways inflammation, and abrogating some features of airway remodeling. SIGNIFICANCE STATEMENT: Calcium-sensing receptor (CaSR) negative allosteric modulators (NAMs) reduce airway smooth muscle hyperresponsiveness, reverse airway inflammation as efficiently as topical corticosteroids, and suppress airway remodeling in asthma surrogates. CaSR NAMs, which were initially developed for oral therapy of osteoporosis proved inefficacious for this indication despite being safe and well tolerated. Here we show that structurally unrelated CaSR NAMs are suitable for inhaled delivery and represent a one-stop, steroid-free approach to asthma control and prophylaxis.


Assuntos
Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Indanos/uso terapêutico , Naftalenos/uso terapêutico , Fenilpropionatos/uso terapêutico , Quinazolinonas/uso terapêutico , Receptores de Detecção de Cálcio/agonistas , Regulação Alostérica , Animais , Antiasmáticos/efeitos adversos , Antiasmáticos/farmacologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Reposicionamento de Medicamentos , Células HEK293 , Humanos , Indanos/efeitos adversos , Indanos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Naftalenos/efeitos adversos , Naftalenos/farmacologia , Fenilpropionatos/efeitos adversos , Fenilpropionatos/farmacologia , Quinazolinonas/efeitos adversos , Quinazolinonas/farmacologia , Receptores de Detecção de Cálcio/metabolismo
5.
Int J Mol Sci ; 22(18)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34576291

RESUMO

Pharmacological allosteric agonists (calcimimetics) of the extracellular calcium-sensing receptor (CaSR) have substantial gastro-intestinal side effects and induce the expression of inflammatory markers in colon cancer cells. Here, we compared the effects of both CaSR-specific (R enantiomers) and -unspecific (S enantiomers) enantiomers of a calcimimetic (NPS 568) and a calcilytic (allosteric CaSR antagonists; NPS 2143) to prove that these effects are indeed mediated via the CaSR, rather than via off-target effects, e.g., on ß-adrenoceptors or calcium channels, of these drugs. The unspecific S enantiomer of NPS 2143 and NPS S-2143 was prepared using synthetic chemistry and characterized using crystallography. NPS S-2143 was then tested in HEK-293 cells stably transfected with the human CaSR (HEK-CaSR), where it did not inhibit CaSR-mediated intracellular Ca2+ signals, as expected. HT29 colon cancer cells transfected with the CaSR were treated with both enantiomers of NPS 568 and NPS 2143 alone or in combination, and the expression of CaSR and the pro-inflammatory cytokine interleukin 8 (IL-8) was measured by RT-qPCR and ELISA. Only the CaSR-selective enantiomers of the calcimimetic NPS 568 and NPS 2143 were able to modulate CaSR and IL-8 expression. We proved that pro-inflammatory effects in colon cancer cells are indeed mediated through CaSR activation. The non-CaSR selective enantiomer NPS S-2143 will be a valuable tool for investigations in CaSR-mediated processes.


Assuntos
Neoplasias do Colo/metabolismo , Espaço Extracelular/metabolismo , Receptores de Detecção de Cálcio/química , Receptores de Detecção de Cálcio/metabolismo , Neoplasias do Colo/patologia , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HT29 , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Modelos Moleculares , Conformação Molecular , Receptores de Detecção de Cálcio/genética , Estereoisomerismo
6.
J Am Soc Nephrol ; 29(7): 1838-1848, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29848507

RESUMO

Background Hypercalciuria can result from activation of the basolateral calcium-sensing receptor (CaSR), which in the thick ascending limb of Henle's loop controls Ca2+ excretion and NaCl reabsorption in response to extracellular Ca2+ However, the function of CaSR in the regulation of NaCl reabsorption in the distal convoluted tubule (DCT) is unknown. We hypothesized that CaSR in this location is involved in activating the thiazide-sensitive NaCl cotransporter (NCC) to prevent NaCl loss.Methods We used a combination of in vitro and in vivo models to examine the effects of CaSR on NCC activity. Because the KLHL3-WNK4-SPAK pathway is involved in regulating NaCl reabsorption in the DCT, we assessed the involvement of this pathway as well.Results Thiazide-sensitive 22Na+ uptake assays in Xenopus laevis oocytes revealed that NCC activity increased in a WNK4-dependent manner upon activation of CaSR with Gd3+ In HEK293 cells, treatment with the calcimimetic R-568 stimulated SPAK phosphorylation only in the presence of WNK4. The WNK4 inhibitor WNK463 also prevented this effect. Furthermore, CaSR activation in HEK293 cells led to phosphorylation of KLHL3 and WNK4 and increased WNK4 abundance and activity. Finally, acute oral administration of R-568 in mice led to the phosphorylation of NCC.Conclusions Activation of CaSR can increase NCC activity via the WNK4-SPAK pathway. It is possible that activation of CaSR by Ca2+ in the apical membrane of the DCT increases NaCl reabsorption by NCC, with the consequent, well known decrease of Ca2+ reabsorption, further promoting hypercalciuria.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sódio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ativação Enzimática/genética , Células HEK293 , Humanos , Imidazóis/farmacologia , Masculino , Camundongos , Proteínas dos Microfilamentos , Oócitos , Fenetilaminas/farmacologia , Fosforilação/efeitos dos fármacos , Propilaminas/farmacologia , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Pirrolidinas/farmacologia , Receptores de Detecção de Cálcio/genética , Transdução de Sinais , Membro 1 da Família 12 de Carreador de Soluto/antagonistas & inibidores , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Transfecção , Proteínas de Xenopus/metabolismo , Xenopus laevis
7.
BMC Cancer ; 17(1): 190, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28288584

RESUMO

BACKGROUND: Cancer cachexia is a multifactorial syndrome that dramatically decreases survival. Loss of white adipose tissue (WAT) is one of the key characteristics of cachexia. WAT wasting is paralleled by microarchitectural remodeling in cachectic cancer patients. Fibrosis results from uncontrolled ECM synthesis, a process in which, transforming growth factor-beta (TGFß) plays a pivotal role. So far, the mechanisms involved in adipose tissue (AT) re-arrangement, and the role of TGFß in inducing AT remodeling in weight-losing cancer patients are poorly understood. This study examined the modulation of ECM components mediated by TGFß pathway in fibrotic AT obtained from cachectic gastrointestinal cancer patients. METHODS: After signing the informed consent form, patients were enrolled into the following groups: cancer cachexia (CC, n = 21), weight-stable cancer (WSC, n = 17), and control (n = 21). The total amount of collagen and elastic fibers in the subcutaneous AT was assessed by histological analysis and by immunohistochemistry. TGFß isoforms expression was analyzed by Multiplex assay and by immunohistochemistry. Alpha-smooth muscle actin (αSMA), fibroblast-specific protein (FSP1), Smad3 and 4 were quantified by qPCR and/or by immunohistochemistry. Interleukin (IL) 2, IL5, IL8, IL13 and IL17 content, cytokines known to be associated with fibrosis, was measured by Multiplex assay. RESULTS: There was an accumulation of collagen and elastic fibers in the AT of CC, as compared with WSC and controls. Collagens type I, III, VI, and fibronectin expression was enhanced in the tissue of CC, compared with both WSC and control. The pronounced expression of αSMA in the surrounding of adipocytes, and the increased mRNA content for FSP1 (20-fold) indicate the presence of activated myofibroblasts; particularly in CC. TGFß1 and TGFß3 levels were up-regulated by cachexia in AT, as well in the isolated adipocytes. Smad3 and Smad4 labeling was found to be more evident in the fibrotic areas of CC adipose tissue. CONCLUSIONS: Cancer cachexia promotes the development of AT fibrosis, in association with altered TGFß signaling, compromising AT organization and function.


Assuntos
Tecido Adiposo/patologia , Caquexia/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Actinas/genética , Actinas/metabolismo , Adulto , Idoso , Caquexia/complicações , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Fibrose/complicações , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/complicações , Neoplasias/patologia , Isoformas de Proteínas/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100 , Proteínas Smad/genética , Proteínas Smad/metabolismo
8.
J Physiol ; 594(22): 6583-6594, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27616476

RESUMO

Neurons differentiated from pluripotent stem cells using established neural culture conditions often exhibit functional deficits. Recently, we have developed enhanced media which both synchronize the neurogenesis of pluripotent stem cell-derived neural progenitors and accelerate their functional maturation; together these media are termed SynaptoJuice. This pair of media are pro-synaptogenic and generate authentic, mature synaptic networks of connected forebrain neurons from a variety of induced pluripotent and embryonic stem cell lines. Such enhanced rate and extent of synchronized maturation of pluripotent stem cell-derived neural progenitor cells generates neurons which are characterized by a relatively hyperpolarized resting membrane potential, higher spontaneous and induced action potential activity, enhanced synaptic activity, more complete development of a mature inhibitory GABAA receptor phenotype and faster production of electrical network activity when compared to standard differentiation media. This entire process - from pre-patterned neural progenitor to active neuron - takes 3 weeks or less, making it an ideal platform for drug discovery and disease modelling in the fields of human neurodegenerative and neuropsychiatric disorders, such as Huntington's disease, Parkinson's disease, Alzheimer's disease and Schizophrenia.


Assuntos
Cálcio/metabolismo , Diferenciação Celular/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/fisiologia , Receptores de GABA-A/metabolismo , Animais , Humanos , Neurogênese/fisiologia
9.
Annu Rev Physiol ; 74: 271-97, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22017175

RESUMO

The extracellular calcium-sensing receptor (CaSR) is the first identified G protein-coupled receptor to be activated by an ion, extracellular calcium (Ca(2+)). Since the identification of the CaSR in 1993, genetic mutations in the CaSR gene, and murine models in which CaSR expression has been manipulated, have clearly demonstrated the importance of this receptor in the maintenance of stable, free, ionized Ca(2+) concentration in the extracellular fluids. These functions have been extensively reviewed elsewhere. However, the distribution pattern and expression of the CaSR in lower vertebrates strongly suggest that the CaSR must play a role that is independent of mineral cation metabolism. This review addresses the involvement of the CaSR in nutrient sensing; its putative and demonstrated functions during conception, embryonic development, and birth; and its contributions to adult physiology and disease, with reference to CaSR-based therapeutics. Recent ongoing developments concerning the role of the CaSR in stem cell differentiation are also reviewed.


Assuntos
Cálcio/fisiologia , Receptores de Detecção de Cálcio/fisiologia , Animais , Evolução Biológica , Feminino , Crescimento/fisiologia , Homeostase/fisiologia , Humanos , Camundongos , Parto/fisiologia , Gravidez , Receptores de Detecção de Cálcio/efeitos dos fármacos , Receptores de Detecção de Cálcio/genética , Reprodução/fisiologia , Células-Tronco/fisiologia
10.
J Cell Sci ; 126(Pt 19): 4490-501, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23886943

RESUMO

The Ca(2+)-sensing receptor (CaSR) is the master regulator of whole-body extracellular free ionized [Ca(2+)]o. In addition to sensing [Ca(2+)]o, CaSR integrates inputs from a variety of different physiological stimuli. The CaSR is also expressed in many regions outside the [Ca(2+)]o homeostatic system, including the fetal lung where it plays a crucial role in lung development. Here, we show that neuroepithelial bodies (NEBs) of the postnatal mouse lung express a functional CaSR. NEBs are densely innervated groups of neuroendocrine epithelial cells in the lung representing complex sensory receptors in the airways and exhibiting stem cell characteristics. qRT-PCR performed on laser microdissected samples from GAD67-GFP mouse lung cryosections revealed exclusive expression of the CaSR in the NEB microenvironment. CaSR immunoreactivity was present at NEB cells from postnatal day 14 onwards. Confocal imaging of lung slices revealed that NEB cells responded to an increase of [Ca(2+)]o with a rise in intracellular Ca(2+) ([Ca(2+)]i); an effect mimicked by several membrane-impermeant CaSR agonists (e.g. the calcimimetic R-568) and that was blocked by the calcilytic Calhex-231. Block of TRPC channels attenuated the CaSR-dependent increases in [Ca(2+)]i, suggesting that Ca(2+) influx through TRPC channels contributes to the total [Ca(2+)]i signal evoked by the CaSR in NEBs. CaSR also regulated baseline [Ca(2+)]i in NEBs and, through paracrine signaling from Clara-like cells, coordinated intercellular communication in the NEB microenvironment. These data suggest that the NEB CaSR integrates multiple signals converging on this complex chemosensory unit, and is a key regulator of this intrapulmonary airway stem cell niche.


Assuntos
Pulmão/metabolismo , Células Neuroendócrinas/citologia , Corpos Neuroepiteliais/metabolismo , Receptores de Detecção de Cálcio/biossíntese , Animais , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Neuroendócrinas/metabolismo , Receptores de Detecção de Cálcio/metabolismo
11.
Biochim Biophys Acta ; 1833(7): 1732-44, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23267858

RESUMO

The calcium sensing receptor (CaSR) is a class C G-protein-coupled receptor that is crucial for the feedback regulation of extracellular free ionised calcium homeostasis. While extracellular calcium (Ca(2+)o) is considered the primary physiological ligand, the CaSR is activated physiologically by a plethora of molecules including polyamines and l-amino acids. Activation of the CaSR by different ligands has the ability to stabilise unique conformations of the receptor, which may lead to preferential coupling of different G proteins; a phenomenon termed 'ligand-biased signalling'. While mutations of the CaSR are currently not linked with any malignancies, altered CaSR expression and function are associated with cancer progression. Interestingly, the CaSR appears to act both as a tumour suppressor and an oncogene, depending on the pathophysiology involved. Reduced expression of the CaSR occurs in both parathyroid and colon cancers, leading to loss of the growth suppressing effect of high Ca(2+)o. On the other hand, activation of the CaSR might facilitate metastasis to bone in breast and prostate cancer. A deeper understanding of the mechanisms driving CaSR signalling in different tissues, aided by a systems biology approach, will be instrumental in developing novel drugs that target the CaSR or its ligands in cancer. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.


Assuntos
Antineoplásicos/uso terapêutico , Cálcio/metabolismo , Neoplasias/patologia , Receptores de Detecção de Cálcio/metabolismo , Animais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Receptores de Detecção de Cálcio/antagonistas & inibidores , Transdução de Sinais
12.
Am J Physiol Lung Cell Mol Physiol ; 306(5): L405-19, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24375798

RESUMO

Chronic injury of alveolar lung epithelium leads to epithelial disintegrity in idiopathic pulmonary fibrosis (IPF). We had reported earlier that Grhl2, a transcriptional factor, maintains alveolar epithelial cell integrity by directly regulating components of adherens and tight junctions and thus hypothesized an important role of GRHL2 in pathogenesis of IPF. Comparison of GRHL2 distribution at different stages of human lung development showed its abundance in developing lung epithelium and in adult lung epithelium. However, GRHL2 is detected in normal human lung mesenchyme only at early fetal stage (week 9). Similar mesenchymal reexpression of GRHL2 was also observed in IPF. Immunofluorescence analysis in serial sections from three IPF patients revealed at least two subsets of alveolar epithelial cells (AEC), based on differential GRHL2 expression and the converse fluorescence intensities for epithelial vs. mesenchymal markers. Grhl2 was not detected in mesenchyme in intraperitoneal bleomycin-induced injury as well as in spontaneously occurring fibrosis in double-mutant HPS1 and HPS2 mice, whereas in contrast in a radiation-induced fibrosis model, with forced Forkhead box M1 (Foxm1) expression, an overlap of Grhl2 with a mesenchymal marker was observed in fibrotic regions. Grhl2's role in alveolar epithelial cell plasticity was confirmed by altered Grhl2 gene expression analysis in IPF and further validated by in vitro manipulation of its expression in alveolar epithelial cell lines. Our findings reveal important pathophysiological differences between human IPF and specific mouse models of fibrosis and support a crucial role of GRHL2 in epithelial activation in lung fibrosis and perhaps also in epithelial plasticity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fibrose Pulmonar Idiopática/fisiopatologia , Mucosa Respiratória/fisiologia , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Masculino , Mesoderma/metabolismo , Mesoderma/fisiologia , Camundongos , Camundongos Mutantes , Pessoa de Meia-Idade , Gravidez , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/fisiologia , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Especificidade da Espécie , Fatores de Transcrição/genética
13.
Br J Nutr ; 111 Suppl 1: S16-22, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24382107

RESUMO

The extracellular Ca-sensing receptor (CaSR) is a sensor for a number of key nutrients within the body, including Ca ions (Ca²âº) and L-amino acids. The CaSR is expressed in a number of specialised cells within the gastrointestinal (GI) tract, and much work has been done to examine CaSR's role as a nutrient sensor in this system. This review article examines two emerging roles for the CaSR within the GI tract--as a mediator of kokumi taste modulation in taste cells and as a regulator of dietary hormone release in response to L-amino acids in the intestine.


Assuntos
Aminoácidos/metabolismo , Cálcio/metabolismo , Hormônios Gastrointestinais/metabolismo , Trato Gastrointestinal/metabolismo , Estado Nutricional , Receptores de Detecção de Cálcio/metabolismo , Paladar , Animais , Humanos , Mucosa Intestinal/metabolismo , Papilas Gustativas/metabolismo , Percepção Gustatória
14.
Toxicol Pathol ; 42(3): 591-602, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23823703

RESUMO

In recent years, there has been considerable activity to identify urinary biomarkers of nephrotoxicity as noninvasive measurements with greater sensitivity and specificity than traditional biomarkers, such as serum creatinine and blood urea nitrogen. Our study aimed to use cisplatin-treated rats to evaluate the use of immunohistochemistry directed at multiple urinary biomarkers in kidney tissue. Tissue levels were compared to urinary levels of these biomarkers to demonstrate tissue specificity and sensitivity. These techniques could also be used in studies where urine samples are not available, such as retrospective studies in drug safety testing, to demonstrate the potential utility of using these biomarkers in future preclinical or clinical studies. All of the biomarkers investigated showed either an increase (kidney injury molecule [KIM-1], osteopontin [OPN], and, clusterin) or a decrease (alpha-glutathione S-transferase and trefoil factor 3) except beta 2 microglobulin (ß2MG) that showed no significant changes 5 days after 1.0 mg/kg or 2.5 mg/kg cisplatin treatment. All of the biomarkers except ß2MG showed utility as tissue biomarkers, but KIM-1 and OPN expression correlated closely with urinary biomarker measurements and reflect tissue damage. Future studies are needed to determine the wider application of these two markers for detecting renal toxicity following administration of other nephrotoxicants.


Assuntos
Biomarcadores/urina , Cisplatino/toxicidade , Nefropatias/induzido quimicamente , Nefropatias/urina , Rim/efeitos dos fármacos , Animais , Moléculas de Adesão Celular/urina , Imuno-Histoquímica , Rim/química , Rim/patologia , Nefropatias/patologia , Masculino , Osteopontina/urina , Ratos , Ratos Wistar
15.
J Cachexia Sarcopenia Muscle ; 14(4): 1621-1630, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37177862

RESUMO

BACKGROUND: Cachexia is a wasting syndrome associated with systemic inflammation and metabolic disruption. Detection of the early signs of the disease may contribute to the effective attenuation of associated symptoms. Despite playing a central role in the control of metabolism and inflammation, the liver has received little attention in cachexia. We previously described relevant disruption of metabolic pathways in the organ in an animal model of cachexia, and herein, we adopt the same model to investigate temporal onset of inflammation in the liver. The aim was thus to study inflammation in rodent liver in the well-characterized cachexia model of Walker 256 carcinosarcoma and, in addition, to describe inflammatory alterations in the liver of one cachectic colon cancer patient, as compared to one control and one weight-stable cancer patient. METHODS: Colon cancer patients (one weight stable [WSC] and one cachectic [CC]) and one patient undergoing surgery for cholelithiasis (control, n = 1) were enrolled in the study, after obtainment of fully informed consent. Eight-week-old male rats were subcutaneously inoculated with a Walker 256 carcinosarcoma cell suspension (2 × 107 cells in 1.0 mL; tumour-bearing [T]; or phosphate-buffered saline-controls [C]). The liver was excised on Days 0 (n = 5), 7 (n = 5) and 14 (n = 5) after tumour cell injection. RESULTS: In rodent cachexia, we found progressively higher numbers of CD68+ myeloid cells in the liver along cancer-cachexia development. Similar findings are described for CC, whose liver showed infiltration of the same cell type, compared with both WSC and control patient organs. In advanced rodent cachexia, hepatic phosphorylated c-Jun N-terminal kinase protein content and the inflammasome pathway protein expression were increased in relation to baseline (P < 0.05). These changes were accompanied by augmented expression of the active interleukin-1ß (IL-1ß) form (P < 0.05 for both circulating and hepatic content). CONCLUSIONS: The results show that cancer cachexia is associated with an increase in the number of myeloid cells in rodent and human liver and with modulation of hepatic inflammasome pathway. The latter contributes to the aggravation of systemic inflammation, through increased release of IL-1ß.


Assuntos
Carcinossarcoma , Neoplasias do Colo , Humanos , Masculino , Ratos , Animais , Caquexia/patologia , Inflamassomos/metabolismo , Fígado/metabolismo , Inflamação/metabolismo , Neoplasias do Colo/complicações , Carcinossarcoma/complicações , Carcinossarcoma/metabolismo
16.
Org Biomol Chem ; 10(39): 7922-7, 2012 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22940747

RESUMO

Three selectively fluorinated cinacalcet analogues are prepared and their activity as calcium-sensing receptor (CaR) agonists is assessed. Individual (2R,1'R)-2 and (2S,1'R)-3 fluorocinacalcet diastereoisomers were prepared using the MacMillan asymmetric fluorination reaction. Assays with the recombinant human CaR revealed that both diastereoisomers have a similar potency to each other although slightly lower (75-80%) than that of cinacalcet 1. The SF(5)-cinacalcet analogue 4 was prepared from meta-pentafluorosulfanyl benzyl alcohol and has ~75% agonist activity relative to cinacalcet 1 indicating that the SF(5) group can replace the CF(3) group and retain significant bioactivity.


Assuntos
Fluoretos/química , Flúor/química , Naftalenos/farmacologia , Receptores de Detecção de Cálcio/agonistas , Compostos de Enxofre/química , Cinacalcete , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Naftalenos/síntese química , Naftalenos/química , Relação Estrutura-Atividade
17.
Nat Neurosci ; 11(3): 285-91, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18223649

RESUMO

The extracellular calcium-sensing receptor (CaSR) monitors the systemic, extracellular, free ionized-calcium level ([Ca(2+)](o)) in organs involved in systemic [Ca(2+)](o) homeostasis. However, CaSR is also expressed in the nervous system, where its role is unknown. We found large amounts of CaSR in perinatal mouse sympathetic neurons when their axons were innervating and branching extensively in their targets. Manipulating CaSR function in these neurons by varying [Ca(2+)](o), using CaSR agonists and antagonists, or expressing a dominant-negative CaSR markedly affected neurite growth in vitro. Sympathetic neurons lacking CaSR had smaller neurite arbors in vitro, and sympathetic innervation density was reduced in CaSR-deficient mice in vivo. Hippocampal pyramidal neurons, which also express CaSR, had smaller dendrites when transfected with dominant-negative CaSR in postnatal organotypic cultures. Our findings reveal a crucial role for CaSR in regulating the growth of neural processes in the peripheral and central nervous systems.


Assuntos
Axônios/metabolismo , Sinalização do Cálcio/genética , Dendritos/metabolismo , Gânglios Simpáticos/embriologia , Gânglios Simpáticos/crescimento & desenvolvimento , Receptores de Detecção de Cálcio/metabolismo , Animais , Axônios/ultraestrutura , Sinalização do Cálcio/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Forma Celular/genética , Células Cultivadas , Dendritos/ultraestrutura , Corantes Fluorescentes , Gânglios Simpáticos/citologia , Cones de Crescimento/metabolismo , Cones de Crescimento/ultraestrutura , Hipocampo/citologia , Hipocampo/embriologia , Hipocampo/metabolismo , Proteínas Luminescentes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuritos/metabolismo , Neuritos/ultraestrutura , Técnicas de Cultura de Órgãos , Células Piramidais/citologia , Células Piramidais/metabolismo , Receptores de Detecção de Cálcio/efeitos dos fármacos , Receptores de Detecção de Cálcio/genética
18.
Pflugers Arch ; 461(6): 665-75, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21301863

RESUMO

The large conductance, voltage- and calcium-activated potassium channel, BK(Ca), is a known target for the gasotransmitter, carbon monoxide (CO). Activation of BK(Ca) by CO modulates cellular excitability and contributes to the physiology of a diverse array of processes, including vascular tone and oxygen-sensing. Currently, there is no consensus regarding the molecular mechanisms underpinning reception of CO by the BK(Ca). Here, employing voltage-clamped, inside-out patches from HEK293 cells expressing single, double and triple cysteine mutations in the BK(Ca) α-subunit, we test the hypothesis that CO regulation is conferred upon the channel by interactions with cysteine residues within the RCK2 domain. In physiological [Ca(2+)](i), all mutants carrying a cysteine substitution at position 911 (C911G) demonstrated significantly reduced CO sensitivity; the C911G mutant did not express altered Ca(2+)-sensitivity. In contrast, histidine residues in RCK1 domain, previously shown to ablate CO activation in low [Ca(2+)](i), actually increased CO sensitivity when [Ca(2+)](i) was in the physiological range. Importantly, cyanide, employed here as a substituent for CO at potential metal centres, occluded activation by CO; this effect was freely reversible. Taken together, these data suggest that a specific cysteine residue in the C-terminal domain, which is close to the Ca(2+) bowl but which is not involved in Ca(2+) activation, confers significant CO sensitivity to BK(Ca) channels. The rapid reversibility of CO and cyanide binding, coupled to information garnered from other CO-binding proteins, suggests that C911 may be involved in formation of a transition metal cluster which can bind and, thereafter, activate BK(Ca).


Assuntos
Monóxido de Carbono/metabolismo , Cisteína/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Sequência de Aminoácidos , Cálcio/metabolismo , Cisteína/genética , Células HEK293 , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/efeitos dos fármacos , Técnicas de Patch-Clamp , Cianeto de Potássio/farmacologia
19.
Pflugers Arch ; 462(2): 267-79, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21559843

RESUMO

Impairment of lung liquid absorption can lead to severe respiratory symptoms, such as those observed in pulmonary oedema. In the adult lung, liquid absorption is driven by cation transport through two pathways: a well-established amiloride-sensitive Na(+) channel (ENaC) and, more controversially, an amiloride-insensitive channel that may belong to the cyclic nucleotide-gated (CNG) channel family. Here, we show robust CNGA1 (but not CNGA2 or CNGA3) channel expression principally in rat alveolar type I cells; CNGA3 was expressed in ciliated airway epithelial cells. Using a rat in situ lung liquid clearance assay, CNG channel activation with 1 mM 8Br-cGMP resulted in an approximate 1.8-fold stimulation of lung liquid absorption. There was no stimulation by 8Br-cGMP when applied in the presence of either 100 µM L: -cis-diltiazem or 100 nM pseudechetoxin (PsTx), a specific inhibitor of CNGA1 channels. Channel specificity of PsTx and amiloride was confirmed by patch clamp experiments showing that CNGA1 channels in HEK 293 cells were not inhibited by 100 µM amiloride and that recombinant αßγ-ENaC were not inhibited by 100 nM PsTx. Importantly, 8Br-cGMP stimulated lung liquid absorption in situ, even in the presence of 50 µM amiloride. Furthermore, neither L: -cis-diltiazem nor PsTx affected the ß(2)-adrenoceptor agonist-stimulated lung liquid absorption, but, as expected, amiloride completely ablated it. Thus, transport through alveolar CNGA1 channels, located in type I cells, underlies the amiloride-insensitive component of lung liquid reabsorption. Furthermore, our in situ data highlight the potential of CNGA1 as a novel therapeutic target for the treatment of diseases characterised by lung liquid overload.


Assuntos
GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Isoformas de Proteínas/metabolismo , Alvéolos Pulmonares/metabolismo , Absorção , Amilorida/metabolismo , Animais , Aquaporina 5/metabolismo , Transporte Biológico/fisiologia , GMP Cíclico/análogos & derivados , Canais de Cátion Regulados por Nucleotídeos Cíclicos/antagonistas & inibidores , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Diuréticos/metabolismo , Venenos Elapídicos/metabolismo , Feminino , Células HEK293 , Humanos , Ativação do Canal Iônico/fisiologia , Pulmão/citologia , Masculino , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , Ratos , Ratos Wistar
20.
Histopathology ; 58(2): 180-90, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21255063

RESUMO

AIMS: Renal cell carcinoma (RCC) often recurs as distant metastasis; there is thus a need for new indicators to identify high-risk patients. Glutathione S-transferases (GST)-α and -π are involved in the renal bioactivation of toxic metabolites. The aim was to investigate whether their expression is of diagnostic and prognostic value. METHODS AND RESULTS: Western blotting of microdissected normal kidney and immunostaining of histological RCC microarrays shows expression of GST-α in proximal tubular cells, while GST-π was found in the distal nephron. Of the primary 174 RCC cases examined, GST-α immunoreactivity was restricted to conventional RCC (n=76, 68% positive) and was not seen in any other RCC subtypes. The cross-tabulation of the GST-α scores with other prognostic indices demonstrated that GST-α immunostaining was significantly more frequent in low-grade tumours (χ(2): P<0.004), and that conventional GST-α-positive RCC patients had a mean disease-free survival of 6.0 years (95% confidence interval 5.33-6.63), compared with 4.7 years (3.54-5.90) in GST-α-negative tumours (Kaplan-Meier survival analysis, P=0.011, log-rank test). CONCLUSIONS: GST-α is a highly specific diagnostic marker for primary conventional RCC, where it is a prognostic marker if grade is omitted from the multivariate analysis.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma de Células Renais/enzimologia , Glutationa Transferase/biossíntese , Neoplasias Renais/enzimologia , Western Blotting , Carcinoma de Células Renais/mortalidade , Carcinoma de Células Renais/patologia , Progressão da Doença , Intervalo Livre de Doença , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Neoplasias Renais/mortalidade , Neoplasias Renais/patologia , Estadiamento de Neoplasias , Prognóstico , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA