Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34620709

RESUMO

Germ cells possess the Piwi-interacting RNA pathway to repress transposable elements and maintain genome stability across generations. Transposable element mobilization in somatic cells does not affect future generations, but nonetheless can lead to pathological outcomes in host tissues. We show here that loss of function of the conserved zinc-finger transcription factor Hinfp causes dysregulation of many host genes and derepression of most transposable elements. There is also substantial DNA damage in somatic tissues of Drosophila after loss of Hinfp. Interference of transposable element mobilization by reverse-transcriptase inhibitors can suppress some of the DNA damage phenotypes. The key cell-autonomous target of Hinfp in this process is Histone1, which encodes linker histones essential for higher-order chromatin assembly. Transgenic expression of Hinfp or Histone1, but not Histone4 of core nucleosome, is sufficient to rescue the defects in repressing transposable elements and host genes. Loss of Hinfp enhances Ras-induced tissue growth and aging-related phenotypes. Therefore, Hinfp is a physiological regulator of Histone1-dependent silencing of most transposable elements, as well as many host genes, and serves as a venue for studying genome instability, cancer progression, neurodegeneration, and aging.


Assuntos
Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , Instabilidade Genômica/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Histonas/genética , Histonas/metabolismo , RNA Interferente Pequeno/genética
2.
J Am Chem Soc ; 144(30): 13729-13739, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35876689

RESUMO

We are currently witnessing the dawn of hydrogen (H2) economy, where H2 will soon become a primary fuel for heating, transportation, and long-distance and long-term energy storage. Among diverse possibilities, H2 can be stored as a pressurized gas, a cryogenic liquid, or a solid fuel via adsorption onto porous materials. Metal-organic frameworks (MOFs) have emerged as adsorbent materials with the highest theoretical H2 storage densities on both a volumetric and gravimetric basis. However, a critical bottleneck for the use of H2 as a transportation fuel has been the lack of densification methods capable of shaping MOFs into practical formulations while maintaining their adsorptive performance. Here, we report a high-throughput screening and deep analysis of a database of MOFs to find optimal materials, followed by the synthesis, characterization, and performance evaluation of an optimal monolithic MOF (monoMOF) for H2 storage. After densification, this monoMOF stores 46 g L-1 H2 at 50 bar and 77 K and delivers 41 and 42 g L-1 H2 at operating pressures of 25 and 50 bar, respectively, when deployed in a combined temperature-pressure (25-50 bar/77 K → 5 bar/160 K) swing gas delivery system. This performance represents up to an 80% reduction in the operating pressure requirements for delivering H2 gas when compared with benchmark materials and an 83% reduction compared to compressed H2 gas. Our findings represent a substantial step forward in the application of high-density materials for volumetric H2 storage applications.

3.
Am J Physiol Cell Physiol ; 317(3): C502-C512, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31241988

RESUMO

Sarcopenia, the age-associated loss of skeletal muscle mass and function, is coupled with declines in physical functioning leading to subsequent higher rates of disability, frailty, morbidity, and mortality. Aging and obesity independently contribute to muscle atrophy that is assumed to be a result of the activation of mutual physiological pathways. Understanding mechanisms contributing to the induction of skeletal muscle atrophy with aging and obesity is important for determining targets that may have pivotal roles in muscle loss in these conditions. We find that aging and obesity equally induce an anabolic resistance to acute skeletal muscle contraction as observed with decreases in anabolic signaling activation after contraction. Furthermore, treatment with the sphingosine-1-phosphate analog FTY720 for 4 wk increased lean mass and strength, and the anabolic signaling response to contraction was improved in obese but not older animals. To determine the role of chronic inflammation and different fatty acids on anabolic resistance in skeletal muscle cells, we overexpressed IKKß with and without exposure to saturated fatty acid (SFA; palmitic acid), polyunsaturated fatty acid (eicosapentaenoic acid), and monounsaturated fatty acid (oleic acid). We found that IKKß overexpression increased inflammation markers in muscle cells, and this chronic inflammation exacerbated anabolic resistance in response to SFA. Pretreatment with FTY720 reversed the inflammatory effects of palmitic acid in the muscle cells. Taken together, these data demonstrate chronic inflammation can induce anabolic resistance, SFA aggravates these effects, and FTY720 can reverse this by decreasing ceramide accumulation in skeletal muscle.


Assuntos
Envelhecimento/efeitos dos fármacos , Cloridrato de Fingolimode/uso terapêutico , Contração Muscular/efeitos dos fármacos , Obesidade/tratamento farmacológico , Moduladores do Receptor de Esfingosina 1 Fosfato/uso terapêutico , Envelhecimento/metabolismo , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Cloridrato de Fingolimode/farmacologia , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Distribuição Aleatória , Sarcopenia/tratamento farmacológico , Sarcopenia/metabolismo , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Esfingosina/uso terapêutico , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia
4.
Am J Physiol Regul Integr Comp Physiol ; 310(7): R561-9, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26764052

RESUMO

The loss of skeletal muscle mass is observed in many pathophysiological conditions, including aging and obesity. The loss of muscle mass and function with aging is defined as sarcopenia and is characterized by a mismatch between skeletal muscle protein synthesis and breakdown. Characteristic metabolic features of both aging and obesity are increases in intramyocellular lipid (IMCL) content in muscle. IMCL accumulation may play a mechanistic role in the development of anabolic resistance and the progression of muscle atrophy in aging and obesity. In the present study, aged and high-fat fed mice were used to determine mechanisms leading to muscle loss. We hypothesized the accumulation of bioactive lipids in skeletal muscle, such as ceramide or diacylglycerols, leads to insulin resistance with aging and obesity and the inability to activate protein synthesis, contributing to skeletal muscle loss. We report a positive association between bioactive lipid accumulation and the loss of lean mass and muscle strength. Obese and aged animals had significantly higher storage of ceramide and diacylglycerol compared with young. Furthermore, there was an attenuated insulin response in components of the mTOR anabolic signaling pathway. We also observed differential increases in the expression of inflammatory cytokines and the phosphorylation of IκBα with aging and obesity. These data challenge the accepted role of increased inflammation in obesity-induced insulin resistance in skeletal muscle. Furthermore, we have now established IκBα with a novel function in aging-associated muscle loss that may be independent of its previously understood role as an NF-κB inhibitor.


Assuntos
Envelhecimento/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Sarcopenia/metabolismo , Animais , Insulina/administração & dosagem , Lipídeos/biossíntese , Masculino , Metabolismo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Miosite/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
FASEB J ; 28(9): 4133-47, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24928197

RESUMO

Older individuals have a reduced capacity to induce muscle hypertrophy with resistance exercise (RE), which may contribute to the age-induced loss of muscle mass and function, sarcopenia. We tested the novel hypothesis that dysregulation of microRNAs (miRNAs) may contribute to reduced muscle plasticity with aging. Skeletal muscle expression profiling of protein-coding genes and miRNA was performed in younger (YNG) and older (OLD) men after an acute bout of RE. 21 miRNAs were altered by RE in YNG men, while no RE-induced changes in miRNA expression were observed in OLD men. This striking absence in miRNA regulation in OLD men was associated with blunted transcription of mRNAs, with only 42 genes altered in OLD men vs. 175 in YNG men following RE, demonstrating a reduced adaptability of aging muscle to exercise. Integrated bioinformatics analysis identified miR-126 as an important regulator of the transcriptional response to exercise and reduced lean mass in OLD men. Manipulation of miR-126 levels in myocytes, in vitro, revealed its direct effects on the expression of regulators of skeletal muscle growth and activation of insulin growth factor 1 (IGF-1) signaling. This work identifies a mechanistic role of miRNA in the adaptation of muscle to anabolic stimulation and reveals a significant impairment in exercise-induced miRNA/mRNA regulation with aging.


Assuntos
Envelhecimento/fisiologia , Biomarcadores/metabolismo , Exercício Físico/fisiologia , Fator de Crescimento Insulin-Like I/genética , MicroRNAs/metabolismo , Fadiga Muscular , Músculo Esquelético/metabolismo , Adaptação Fisiológica , Adulto , Idoso , Perfilação da Expressão Gênica , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , MicroRNAs/genética , Músculo Esquelético/patologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Adulto Jovem
6.
bioRxiv ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37546958

RESUMO

From nematodes to placental mammals, key components of the germline transposon silencing piRNAs pathway localize to phase separated perinuclear granules. In Drosophila, the PIWI protein Aub, DEAD box protein Vasa and helicase Armi localize to nuage granules and are required for ping-pong piRNA amplification and phased piRNA processing. Drosophila piRNA mutants lead to genome instability and Chk2 kinase DNA damage signaling. By systematically analyzing piRNA pathway organization, small RNA production, and long RNA expression in single piRNA mutants and corresponding chk2/mnk double mutants, we show that Chk2 activation disrupts nuage localization of Aub and Vasa, and that the HP1 homolog Rhino, which drives piRNA precursor transcription, is required for Aub, Vasa, and Armi localization to nuage. However, these studies also show that ping-pong amplification and phased piRNA biogenesis are independent of nuage localization of Vasa, Aub and Armi. Dispersed cytoplasmic proteins thus appear to mediate these essential piRNA pathway functions.

7.
Cell Rep ; 30(8): 2672-2685.e5, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32101744

RESUMO

In Drosophila, transposon-silencing piRNAs are derived from heterochromatic clusters and a subset of euchromatic transposon insertions, which are bound by the Rhino-Deadlock-Cutoff complex. The HP1 homolog Rhino binds to Deadlock, which recruits TRF2 to promote non-canonical transcription from both genomic strands. Cuff function is less well understood, but this Rai1 homolog shows hallmarks of adaptive evolution, which can remodel functional interactions within host defense systems. Supporting this hypothesis, Drosophila simulans Cutoff is a dominant-negative allele when expressed in Drosophila melanogaster, in which it traps Deadlock, TRF2, and the conserved transcriptional co-repressor CtBP in stable complexes. Cutoff functions with Rhino and Deadlock to drive non-canonical transcription. In contrast, CtBP suppresses canonical transcription of transposons and promoters flanking the major germline clusters, and canonical transcription interferes with downstream non-canonical transcription and piRNA production. Adaptive evolution thus targets interactions among Cutoff, TRF2, and CtBP that balance canonical and non-canonical piRNA precursor transcription.


Assuntos
Drosophila/genética , Redes Reguladoras de Genes , RNA Interferente Pequeno/metabolismo , Alelos , Animais , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/metabolismo , Genes Dominantes , Modelos Biológicos , Mutação/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA