Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cardiovasc Diabetol ; 23(1): 13, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184612

RESUMO

BACKGROUND: Metabolic effects of empagliflozin treatment include lowered glucose and insulin concentrations, elevated free fatty acids and ketone bodies and have been suggested to contribute to the cardiovascular benefits of empagliflozin treatment, possibly through an improved cardiac function. We aimed to evaluate the influence of these metabolic changes on cardiac function in patients with T2D. METHODS: In a randomized cross-over design, the SGLT2 inhibitor empagliflozin (E) was compared with insulin (I) treatment titrated to the same level of glycemic control in 17 patients with type 2 diabetes, BMI of > 28 kg/m2, C-peptide > 500 pM. Treatments lasted 5 weeks and were preceded by 3-week washouts (WO). At the end of treatments and washouts, cardiac diastolic function was determined with magnetic resonance imaging from left ventricle early peak-filling rate and left atrial passive emptying fraction (primary and key secondary endpoints); systolic function from left ventricle ejection fraction (secondary endpoint). Coupling between cardiac function and fatty acid concentrations, was studied on a separate day with a second scan after reduction of plasma fatty acids with acipimox. Data are Mean ± standard error. Between treatment difference (ΔT: E-I) and treatments effects (ΔE: E-WO or ΔI: I -WO) were evaluated using Students' t-test or Wilcoxon signed rank test as appropriate. RESULTS: Glucose concentrations were similar, fatty acids, ketone bodies and lipid oxidation increased while insulin concentrations decreased on empagliflozin compared with insulin treatment. Cardiac diastolic and systolic function were unchanged by either treatment. Acipimox decreased fatty acids with 35% at all visits, and this led to reduced cardiac diastolic (ΔT: -51 ± 22 ml/s (p < 0.05); ΔE: -33 ± 26 ml/s (ns); ΔI: 37 ± 26 (ns, p < 0.05 vs ΔE)) and systolic function (ΔT: -3 ± 1% (p < 0.05); ΔE: -3 ± 1% (p < 0.05): ΔI: 1 ± 2 (ns, ns vs ΔE)) under chronotropic stress during empagliflozin compared to insulin treatment. CONCLUSIONS: Despite significant metabolic differences, cardiac function did not differ on empagliflozin compared with insulin treatment. Impaired cardiac function during acipimox treatment, could suggest greater cardiac reliance on lipid metabolism for proper function during empagliflozin treatment in patients with type 2 diabetes. TRIAL REGISTRATION: EudraCT 2017-002101-35, August 2017.


Assuntos
Apêndice Atrial , Diabetes Mellitus Tipo 2 , Humanos , Insulina , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estudos Cross-Over , Glucose , Ácidos Graxos , Corpos Cetônicos
2.
Int J Obes (Lond) ; 45(2): 316-325, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32873911

RESUMO

BACKGROUND: Roux-en-Y gastric bypass (RYGB) surgery is a therapeutic intervention for morbid obesity and type 2 diabetes (T2D) that improves metabolic regulation. Follistatin (Fst) could be implicated in improved glycemia as it is highly regulated by RYGB. However, it is unknown if metabolic status, such as T2D, alters the Fst response to RYGB. In addition, the effect of RYGB on the Fst target, activin A, is unknown in individuals with obesity and T2D, but is needed to interpret the functional effects of altering Fst. Finally, whether Fst-regulated intracellular signaling contributes to beneficial effects of RYGB is undetermined. METHODS: Circulating Fst and activin A were measured before, 1 week, and 1 year after RYGB surgery in a total of 20 individuals with obesity, 10 with normoglycemia (NGT) and 10 with preoperative T2D. Intracellular signaling downstream of the Activin receptor type IIB (ActRIIB) signaling pathway was analyzed in skeletal muscle and adipose tissue. RESULTS: The doubling in circulating Fst observed in subjects with NGT 1-week and 1-year post surgery was absent in T2D. After 1 week, RYGB reduced activin A by 27% (p < 0.001) and 20% (p < 0.01) in subjects with NGT and T2D, respectively; a reduction that tended to be maintained in the subjects with T2D at 1-year post-RYGB (-15%; p = 0.0592). RYGB had no effects on skeletal muscle ActRIIB signaling. In contrast, adipose tissue phosphorylation of SMAD2Ser465/467, p70S6KThr389, S6RPSer235/236, and 4E-BP1Thr37/49 was highly regulated, particularly 1-year post-RYGB (p < 0.05). CONCLUSIONS: In subjects with preoperative T2D, RYGB did not increase circulating Fst contrasting subjects with NGT, while the reduction in activin A was maintained. ActRIIB signaling was upregulated in adipose tissue, but not skeletal muscle, following RYGB in both individuals with NGT and T2D. Our results suggest a role of adipose tissue ActRIIB signaling for the beneficial effects of RYGB surgery.


Assuntos
Receptores de Activinas Tipo II/análise , Ativinas/sangue , Ativinas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Folistatina/sangue , Folistatina/metabolismo , Obesidade Mórbida , Tecido Adiposo/metabolismo , Adulto , Biópsia , Glicemia , Feminino , Seguimentos , Derivação Gástrica , Glucose/metabolismo , Controle Glicêmico , Humanos , Subunidades beta de Inibinas/metabolismo , Masculino , Pessoa de Meia-Idade , Músculos/metabolismo , Obesidade Mórbida/complicações , Obesidade Mórbida/metabolismo , Obesidade Mórbida/fisiopatologia , Obesidade Mórbida/cirurgia , Transdução de Sinais , Fatores de Tempo
3.
BMJ Open ; 12(8): e054100, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953245

RESUMO

INTRODUCTION: Type 2 diabetes (T2D) is characterised by elevated plasma glucose, free fatty acid (FFA) and insulin concentrations, and this metabolic profile is linked to diabetic cardiomyopathy, a diastolic dysfunction at first and increased cardiovascular disease (CVD) risk. Shifting cardiac metabolism towards glucose utilisation has been suggested to improve cardiovascular function and CVD risk, but insulin treatment increases overall glucose oxidation and lowers lipid oxidation, without reducing CVD risk, whereas SGLT2 inhibitors (SGLT2i) increase FFA, ketone body concentrations and lipid oxidation, while decreasing insulin concentrations and CVD risk. The aim of the present study is to elucidate the importance of different metabolic profiles obtained during treatment with a SGLT2i versus insulin for myocardial function in patients with T2D. METHODS AND ANALYSES: Randomised, crossover study, where 20 patients with T2D and body mass index>28 kg/m2 receive 25 mg empagliflozin daily or NPH insulin two times per day first for 5 weeks followed by a 3-week washout before crossing over to the remaining treatment. Insulin treatment is titrated to achieve similar glycaemic control as with empagliflozin. In those randomised to insulin first, glycaemia during an initial empagliflozin run-in period prior to randomisation serves as target glucose. Metabolic and cardiac evaluation is performed before and at the end of each treatment period.The primary endpoint is change (treatment-washout) in left ventricular peak filling rate, as assessed by cardiac MRI with and without acute lowering of plasma FFAs with acipimox. Secondary and explorative endpoints are changes in left atrial passive emptying fraction, left ventricular ejection fraction, central blood volume and metabolic parameters. ETHICS AND DISSEMINATION: This study is approved by the Danish Medicines Agency (ref. nr.: 2017061587), the Danish Data Protection Agency (ref. nr.: AHH-2017-093) and the Capital Region Ethics Committee (ref. nr.: H-17018846). The trial will be conducted in accordance with ICH-GCP guidelines and the Declaration of Helsinki and all participants will provide oral and written informed consent. Our results, regardless of outcome, will be published in relevant scientific journals and we also will seek to disseminate results through presentations at scientific meetings. TRIAL REGISTRATION NUMBER: EudraCT: 2017-002101.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Hiperglicemia , Hiperinsulinismo , Inibidores do Transportador 2 de Sódio-Glicose , Compostos Benzidrílicos/uso terapêutico , Estudos Cross-Over , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácidos Graxos não Esterificados , Glucose , Glucosídeos , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Volume Sistólico , Função Ventricular Esquerda
4.
J Cachexia Sarcopenia Muscle ; 10(6): 1241-1257, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31402604

RESUMO

BACKGROUND: Skeletal muscle wasting is often associated with insulin resistance. A major regulator of muscle mass is the transforming growth factor ß (TGF-ß) superfamily, including activin A, which causes atrophy. TGF-ß superfamily ligands also negatively regulate insulin-sensitive proteins, but whether this pathway contributes to insulin action remains to be determined. METHODS: To elucidate if TGF-ß superfamily ligands regulate insulin action, we used an adeno-associated virus gene editing approach to overexpress an activin A inhibitor, follistatin (Fst288), in mouse muscle of lean and diet-induced obese mice. We determined basal and insulin-stimulated 2-deoxy-glucose uptake using isotopic tracers in vivo. Furthermore, to evaluate whether circulating Fst and activin A concentrations are associated with obesity, insulin resistance, and weight loss in humans, we analysed serum from morbidly obese subjects before, 1 week, and 1 year after Roux-en-Y gastric bypass (RYGB). RESULTS: Fst288 muscle overexpression markedly increased in vivo insulin-stimulated (but not basal) glucose uptake (+75%, P < 0.05) and increased protein expression and intracellular insulin signalling of AKT, TBC1D4, PAK1, pyruvate dehydrogenase-E1α, and p70S6K, while decreasing TBC1D1 signaling (P < 0.05). Fst288 increased both basal and insulin-stimulated protein synthesis, but no correlation was observed between the Fst288-driven hypertrophy and the increase in insulin-stimulated glucose uptake. Importantly, Fst288 completely normalized muscle glucose uptake in insulin-resistant diet-induced obese mice. RYGB surgery doubled circulating Fst and reduced activin A (-24%, P < 0.05) concentration 1 week after surgery before any significant weight loss in morbidly obese normoglycemic patients, while major weight loss after 1 year did not further change the concentrations. CONCLUSIONS: We here present evidence that Fst is a potent regulator of insulin action in muscle, and in addition to AKT and p70S6K, we identify TBC1D1, TBC1D4, pyruvate dehydrogenase-E1α, and PAK1 as Fst targets. Circulating Fst more than doubled post-RYGB surgery, a treatment that markedly improved insulin sensitivity, suggesting a role for Fst in regulating glycaemic control. These findings demonstrate the therapeutic potential of inhibiting TGF-ß superfamily ligands to improve insulin action and Fst's relevance to muscle wasting-associated insulin-resistant conditions in mice and humans.


Assuntos
Folistatina/sangue , Folistatina/genética , Atrofia Muscular/metabolismo , Obesidade/cirurgia , Adulto , Animais , Dependovirus , Feminino , Derivação Gástrica , Vetores Genéticos/farmacologia , Células HEK293 , Humanos , Subunidades beta de Inibinas/antagonistas & inibidores , Subunidades beta de Inibinas/sangue , Resistência à Insulina , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Obesidade/sangue , Parvovirinae/genética , Ratos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA