Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Annu Rev Immunol ; 33: 787-821, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25706097

RESUMO

Epstein-Barr virus (EBV) is usually acquired silently early in life and carried thereafter as an asymptomatic infection of the B lymphoid system. However, many circumstances disturb the delicate EBV-host balance and cause the virus to display its pathogenic potential. Thus, primary infection in adolescence can manifest as infectious mononucleosis (IM), as a fatal illness that magnifies the immunopathology of IM in boys with the X-linked lymphoproliferative disease trait, and as a chronic active disease leading to life-threatening hemophagocytosis in rare cases of T or natural killer (NK) cell infection. Patients with primary immunodeficiencies affecting the NK and/or T cell systems, as well as immunosuppressed transplant recipients, handle EBV infections poorly, and many are at increased risk of virus-driven B-lymphoproliferative disease. By contrast, a range of other EBV-positive malignancies of lymphoid or epithelial origin arise in individuals with seemingly intact immune systems through mechanisms that remain to be understood.


Assuntos
Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/imunologia , Imunidade Adaptativa , Animais , Portador Sadio , Infecções por Vírus Epstein-Barr/diagnóstico , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/fisiologia , Humanos , Imunidade Inata , Hospedeiro Imunocomprometido , Síndromes de Imunodeficiência/etiologia , Transtornos Linfoproliferativos/etiologia
2.
PLoS Pathog ; 20(6): e1012177, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843296

RESUMO

BACKGROUND: Epstein-Barr virus (EBV) is a likely prerequisite for multiple sclerosis (MS) but the underlying mechanisms are unknown. We investigated antibody and T cell responses to EBV in persons with MS (pwMS), healthy EBV-seropositive controls (HC) and post-infectious mononucleosis (POST-IM) individuals up to 6 months after disease resolution. The ability of EBV-specific T cell responses to target antigens from the central nervous system (CNS) was also investigated. METHODS: Untreated persons with relapsing-remitting MS, POST-IM individuals and HC were, as far as possible, matched for gender, age and HLA-DRB1*15:01. EBV load was determined by qPCR, and IgG responses to key EBV antigens were determined by ELISA, immunofluorescence and Western blot, and tetanus toxoid antibody responses by multiplex bead array. EBV-specific T cell responses were determined ex vivo by intracellular cytokine staining (ICS) and cross-reactivity of in vitro-expanded responses probed against 9 novel Modified Vaccinia Ankara (MVA) viruses expressing candidate CNS autoantigens. RESULTS: EBV load in peripheral blood mononuclear cells (PBMC) was unchanged in pwMS compared to HC. Serologically, while tetanus toxoid responses were unchanged between groups, IgG responses to EBNA1 and virus capsid antigen (VCA) were significantly elevated (EBNA1 p = 0.0079, VCA p = 0.0298) but, importantly, IgG responses to EBNA2 and the EBNA3 family antigens were also more frequently detected in pwMS (EBNA2 p = 0.042 and EBNA3 p = 0.005). In ex vivo assays, T cell responses to autologous EBV-transformed B cells and to EBNA1 were largely unchanged numerically, but significantly increased IL-2 production was observed in response to certain stimuli in pwMS. EBV-specific polyclonal T cell lines from both MS and HC showed high levels of autoantigen recognition by ICS, and several neuronal proteins emerged as common targets including MOG, MBP, PLP and MOBP. DISCUSSION: Elevated serum EBV-specific antibody responses in the MS group were found to extend beyond EBNA1, suggesting a larger dysregulation of EBV-specific antibody responses than previously recognised. Differences in T cell responses to EBV were more difficult to discern, however stimulating EBV-expanded polyclonal T cell lines with 9 candidate CNS autoantigens revealed a high level of autoreactivity and indicate a far-reaching ability of the virus-induced T cell compartment to damage the CNS.


Assuntos
Anticorpos Antivirais , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/imunologia , Feminino , Masculino , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Adulto , Anticorpos Antivirais/imunologia , Pessoa de Meia-Idade , Reações Cruzadas/imunologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/virologia , Linfócitos T/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/virologia , Antígenos Virais/imunologia , Carga Viral , Mononucleose Infecciosa/imunologia , Mononucleose Infecciosa/virologia , Antígenos Nucleares do Vírus Epstein-Barr/imunologia , Imunoglobulina G/imunologia
3.
Nature ; 627(8005): 729, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480949
4.
Genes Dev ; 28(1): 58-70, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24395247

RESUMO

The transcriptional regulator c-MYC is abnormally overexpressed in many human cancers. Evasion from apoptosis is critical for cancer development, particularly c-MYC-driven cancers. We explored which anti-apoptotic BCL-2 family member (expressed under endogenous regulation) is essential to sustain c-MYC-driven lymphoma growth to reveal which should be targeted for cancer therapy. Remarkably, inducible Cre-mediated deletion of even a single Mcl-1 allele substantially impaired the growth of c-MYC-driven mouse lymphomas. Mutations in p53 could diminish but not obviate the dependency of c-MYC-driven mouse lymphomas on MCL-1. Importantly, targeting of MCL-1 killed c-MYC-driven human Burkitt lymphoma cells, even those bearing mutations in p53. Given that loss of one allele of Mcl-1 is well tolerated in healthy tissues, our results suggest that therapeutic targeting of MCL-1 would be an attractive therapeutic strategy for MYC-driven cancers.


Assuntos
Linfoma/genética , Linfoma/terapia , Mutação , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Linfoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/genética
5.
PLoS Pathog ; 14(9): e1007110, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30248160

RESUMO

Human herpesviruses are antigenically rich agents that induce strong CD8+T cell responses in primary infection yet persist for life, continually challenging T cell memory through recurrent lytic replication and potentially influencing the spectrum of antigen-specific responses. Here we describe the first lytic proteome-wide analysis of CD8+ T cell responses to a gamma1-herpesvirus, Epstein-Barr virus (EBV), and the first such proteome-wide analysis of primary versus memory CD8+ T cell responses to any human herpesvirus. Primary effector preparations were generated directly from activated CD8+ T cells in the blood of infectious mononucleosis (IM) patients by in vitro mitogenic expansion. For memory preparations, EBV-specific cells in the blood of long-term virus carriers were first re-stimulated in vitro by autologous dendritic cells loaded with a lysate of lytically-infected cells, then expanded as for IM cells. Preparations from 7 donors of each type were screened against each of 70 EBV lytic cycle proteins in combination with the donor's individual HLA class I alleles. Multiple reactivities against immediate early (IE), early (E) and late (L) lytic cycle proteins, including many hitherto unrecognised targets, were detected in both contexts. Interestingly however, the two donor cohorts showed a different balance between IE, E and L reactivities. Primary responses targeted IE and a small group of E proteins preferentially, seemingly in line with their better presentation on the infected cell surface before later-expressed viral evasins take full hold. By contrast, target choice equilibrates in virus carriage with responses to key IE and E antigens still present but with responses to a select subset of L proteins now often prominent. We infer that, for EBV at least, long-term virus carriage with its low level virus replication and lytic antigen release is associated with a re-shaping of the virus-specific response.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/patogenicidade , Mononucleose Infecciosa/imunologia , Proteoma/imunologia , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Portador Sadio/imunologia , Portador Sadio/virologia , Expressão Gênica/genética , Genes Virais , Antígenos HLA/imunologia , Herpesvirus Humano 4/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mononucleose Infecciosa/metabolismo , Mononucleose Infecciosa/virologia , Proteoma/metabolismo
6.
J Virol ; 91(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28835490

RESUMO

Epstein-Barr virus (EBV) is typically acquired asymptomatically in childhood. In contrast, infection later in life often leads to infectious mononucleosis (IM), a febrile illness characterized by anti-EBV IgM antibody positivity, high loads of circulating latently infected B cells, and a marked lymphocytosis caused by hyperexpansion of EBV-specific CD8+ T cells plus a milder expansion of CD56dim NKG2A+ KIR- natural killer (NK) cells. How the two situations compare is unclear due to the paucity of studies on clinically silent infection. Here we describe five prospectively studied patients with asymptomatic infections identified in a seroepidemiologic survey of university entrants. In each case, the key blood sample had high cell-associated viral loads without a marked CD8 lymphocytosis or NK cell disturbance like those seen in patients during the acute phase of IM. Two of the cases with the highest viral loads showed a coincident expansion of activated EBV-specific CD8+ T cells, but overall CD8+ T cell numbers were either unaffected or only mildly increased. Two cases with slightly lower loads, in whom serology suggests the infection may have been caught earlier in the course of infection, also showed no T or NK cell expansion at the time. Interestingly, in another case with a higher viral load, in which T and NK cell responses were undetectable in the primary blood sample in which infection was detected, EBV-specific T cell responses did not appear until several months later, by which time the viral loads in the blood had already fallen. Thus, some patients with asymptomatic primary infections have very high circulating viral loads similar to those in patients during the acute phase of IM and a cell-mediated immune response that is qualitatively similar to that in IM patients but of a lower magnitude. However, other patients may have quite different immune responses that ultimately could reveal novel mechanisms of host control.IMPORTANCE Epstein-Barr virus (EBV) is transmitted orally, replicates in the throat, and then invades the B lymphocyte pool through a growth-transforming latent infection. While primary infection in childhood is usually asymptomatic, delayed infection is associated with infectious mononucleosis (IM), a febrile illness in which patients have high circulating viral loads and an exaggerated virus-induced immune response involving both CD8+ T cells and natural killer (NK) cells. Here we show that in five cases of asymptomatic infection, viral loads in the blood were as high as those in patients during the acute phase of IM, whereas the cell-mediated responses, even when they resembled those in patients during the acute phase of IM in timing and quality, were never as exaggerated. We infer that IM symptoms arise as a consequence not of the virus infection per se but of the hyperactivated immune response. Interestingly, there were idiosyncratic differences among asymptomatic cases in the relationship between the viral load and the response kinetics, emphasizing how much there is still to learn about primary EBV infection.


Assuntos
Infecções Assintomáticas/epidemiologia , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Vírus Epstein-Barr/virologia , Células Matadoras Naturais/imunologia , Adulto , Anticorpos Antivirais/sangue , DNA Viral/genética , Infecções por Vírus Epstein-Barr/diagnóstico , Infecções por Vírus Epstein-Barr/imunologia , Feminino , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/isolamento & purificação , Humanos , Masculino , Prognóstico , Estudos Prospectivos , Reino Unido/epidemiologia , Carga Viral , Adulto Jovem
7.
PLoS Pathog ; 12(4): e1005549, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27096949

RESUMO

Epstein-Barr virus, a B-lymphotropic herpesvirus, is the cause of infectious mononucleosis, has strong aetiologic links with several malignancies and has been implicated in certain autoimmune diseases. Efforts to develop a prophylactic vaccine to prevent or reduce EBV-associated disease have, to date, focused on the induction of neutralising antibody responses. However, such vaccines might be further improved by inducing T cell responses capable of recognising and killing recently-infected B cells. In that context, EBNA2, EBNA-LP and BHRF1 are the first viral antigens expressed during the initial stage of B cell growth transformation, yet have been poorly characterised as CD8+ T cell targets. Here we describe CD8+ T cell responses against each of these three "first wave" proteins, identifying target epitopes and HLA restricting alleles. While EBNA-LP and BHRF1 each contained one strong CD8 epitope, epitopes within EBNA2 induced immunodominant responses through several less common HLA class I alleles (e.g. B*3801 and B*5501), as well as subdominant responses through common class I alleles (e.g. B7 and C*0304). Importantly, such EBNA2-specific CD8+ T cells recognised B cells within the first day post-infection, prior to CD8+ T cells against well-characterised latent target antigens such as EBNA3B or LMP2, and effectively inhibited outgrowth of EBV-transformed B cell lines. We infer that "first wave" antigens of the growth-transforming infection, especially EBNA2, constitute potential CD8+ T cell immunogens for inclusion in prophylactic EBV vaccine design.


Assuntos
Antígenos Virais/imunologia , Linfócitos B/virologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Ativação Linfocitária/imunologia , ELISPOT , Epitopos de Linfócito T/imunologia , Humanos , Immunoblotting , Vacinas Virais/imunologia
8.
PLoS Pathog ; 12(8): e1005799, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27540722

RESUMO

Disruption of T cell memory during severe immune suppression results in reactivation of chronic viral infections, such as Epstein Barr virus (EBV) and Cytomegalovirus (CMV). How different subsets of memory T cells contribute to the protective immunity against these viruses remains poorly defined. In this study we examined the compartmentalization of virus-specific, tissue resident memory CD8+ T cells in human lymphoid organs. This revealed two distinct populations of memory CD8+ T cells, that were CD69+CD103+ and CD69+CD103-, and were retained within the spleen and tonsils in the absence of recent T cell stimulation. These two types of memory cells were distinct not only in their phenotype and transcriptional profile, but also in their anatomical localization within tonsils and spleen. The EBV-specific, but not CMV-specific, CD8+ memory T cells preferentially accumulated in the tonsils and acquired a phenotype that ensured their retention at the epithelial sites where EBV replicates. In vitro studies revealed that the cytokine IL-15 can potentiate the retention of circulating effector memory CD8+ T cells by down-regulating the expression of sphingosine-1-phosphate receptor, required for T cell exit from tissues, and its transcriptional activator, Kruppel-like factor 2 (KLF2). Within the tonsils the expression of IL-15 was detected in regions where CD8+ T cells localized, further supporting a role for this cytokine in T cell retention. Together this study provides evidence for the compartmentalization of distinct types of resident memory T cells that could contribute to the long-term protection against persisting viral infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/imunologia , Memória Imunológica , Antígenos CD/imunologia , Linfócitos T CD8-Positivos/patologia , Infecções por Citomegalovirus/patologia , Infecções por Vírus Epstein-Barr/patologia , Feminino , Humanos , Interleucina-15/imunologia , Fatores de Transcrição Kruppel-Like/imunologia , Masculino , Especificidade de Órgãos/imunologia
9.
Nature ; 490(7418): 116-20, 2012 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-22885699

RESUMO

Burkitt's lymphoma (BL) can often be cured by intensive chemotherapy, but the toxicity of such therapy precludes its use in the elderly and in patients with endemic BL in developing countries, necessitating new strategies. The normal germinal centre B cell is the presumed cell of origin for both BL and diffuse large B-cell lymphoma (DLBCL), yet gene expression analysis suggests that these malignancies may use different oncogenic pathways. BL is subdivided into a sporadic subtype that is diagnosed in developed countries, the Epstein-Barr-virus-associated endemic subtype, and an HIV-associated subtype, but it is unclear whether these subtypes use similar or divergent oncogenic mechanisms. Here we used high-throughput RNA sequencing and RNA interference screening to discover essential regulatory pathways in BL that cooperate with MYC, the defining oncogene of this cancer. In 70% of sporadic BL cases, mutations affecting the transcription factor TCF3 (E2A) or its negative regulator ID3 fostered TCF3 dependency. TCF3 activated the pro-survival phosphatidylinositol-3-OH kinase pathway in BL, in part by augmenting tonic B-cell receptor signalling. In 38% of sporadic BL cases, oncogenic CCND3 mutations produced highly stable cyclin D3 isoforms that drive cell cycle progression. These findings suggest opportunities to improve therapy for patients with BL.


Assuntos
Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/genética , Genômica , Terapia de Alvo Molecular , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Ciclo Celular , Ciclina D3/genética , Ciclina D3/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Genes myc/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Interferência de RNA , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais
10.
PLoS Pathog ; 11(3): e1004746, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25816224

RESUMO

Epstein-Barr virus (EBV) infection often occurs in early childhood and is asymptomatic. However, if delayed until adolescence, primary infection may manifest as acute infectious mononucleosis (AIM), a febrile illness characterised by global CD8+ T-cell lymphocytosis, much of it reflecting a huge expansion of activated EBV-specific CD8+ T-cells. While the events of AIM have been intensely studied, little is known about how these relate to asymptomatic primary infection. Here Gambian children (14-18 months old, an age at which many acquire the virus) were followed for the ensuing six months, monitoring circulating EBV loads, antibody status against virus capsid antigen (VCA) and both total and virus-specific CD8+ T-cell numbers. Many children were IgG anti-VCA-positive and, though no longer IgM-positive, still retained high virus loads comparable to AIM patients and had detectable EBV-specific T-cells, some still expressing activation markers. Virus loads and the frequency/activation status of specific T-cells decreased over time, consistent with resolution of a relatively recent primary infection. Six children with similarly high EBV loads were IgM anti-VCA-positive, indicating very recent infection. In three of these donors with HLA types allowing MHC-tetramer analysis, highly activated EBV-specific T-cells were detectable in the blood with one individual epitope response reaching 15% of all CD8+ T-cells. That response was culled and the cells lost activation markers over time, just as seen in AIM. However, unlike AIM, these events occurred without marked expansion of total CD8+ numbers. Thus asymptomatic EBV infection in children elicits a virus-specific CD8+ T-cell response that can control the infection without over-expansion; conversely, in AIM it appears the CD8 over-expansion, rather than virus load per se, is the cause of disease symptoms.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/imunologia , Imunoglobulina M/imunologia , Anticorpos Antivirais/sangue , Linfócitos T CD8-Positivos/metabolismo , Infecções por Vírus Epstein-Barr/sangue , Infecções por Vírus Epstein-Barr/epidemiologia , Feminino , Gâmbia/epidemiologia , Humanos , Imunoglobulina M/sangue , Lactente , Contagem de Linfócitos , Masculino
11.
Blood ; 126(25): 2665-75, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26450987

RESUMO

Allogeneic stem cell transplantation (allo-HSCT) provides a unique opportunity to track Epstein-Barr virus (EBV) infection in the context of the reconstituting B-cell system. Although many allo-HSCT recipients maintain low or undetectable levels of EBV DNA posttransplant, a significant proportion exhibit elevated and rapidly increasing EBV loads which, if left untreated, may lead to potentially fatal EBV-associated posttransplant lymphoproliferative disease. Intriguingly, this high-level EBV reactivation typically arises in the first 3 months posttransplant, at a time when the peripheral blood contains low numbers of CD27+ memory cells which are the site of EBV persistence in healthy immunocompetent donors. To investigate this apparent paradox, we prospectively monitored EBV levels and B-cell reconstitution in a cohort of allo-HSCT patients for up to 12 months posttransplant. In patients with low or undetectable levels of EBV, the circulating B-cell pool consisted predominantly of transitional and naive cells, with a marked deficiency of CD27+ memory cells which lasted >12 months. However, among patients with high EBV loads, there was a significant increase in both the proportion and number of CD27+ memory B cells. Analysis of sorted CD27+ memory B cells from these patients revealed that this population was preferentially infected with EBV, expressed EBV latent transcripts associated with B-cell growth transformation, had a plasmablastic phenotype, and frequently expressed the proliferation marker Ki-67. These findings suggest that high-level EBV reactivation following allo-HSCT may drive the expansion of latently infected CD27+ B lymphoblasts in the peripheral blood.


Assuntos
Linfócitos B/virologia , Transformação Celular Viral/fisiologia , Infecções por Vírus Epstein-Barr/complicações , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Herpesvirus Humano 4/fisiologia , Ativação Viral/imunologia , Adulto , Idoso , Subpopulações de Linfócitos B/virologia , DNA Viral/sangue , Feminino , Humanos , Memória Imunológica/imunologia , Transtornos Linfoproliferativos/virologia , Masculino , Pessoa de Meia-Idade , Transplante Homólogo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Carga Viral/imunologia
12.
Trends Immunol ; 35(4): 159-69, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24589417

RESUMO

Epstein-Barr virus (EBV), a human herpesvirus with potent B cell growth transforming ability, induces multiple cellular immune responses in the infected host. How these host responses work together to prevent virus pathogenicity, and how immune imbalance predisposes to disease, remain poorly understood. Here, we describe three ongoing lines of enquiry that are shedding new light on these issues. These focus on: (i) patients with infectious mononucleosis or its fatal equivalent, X-linked lymphoproliferative disease; (ii) EBV infection in a range of new, genetically defined, primary immune deficiency states; and (iii) experimental infection in two complementary animal models, the rhesus macaque and the human haemopoietic stem cell reconstituted mouse.


Assuntos
Infecções por Vírus Epstein-Barr/imunologia , Imunidade Celular/imunologia , Animais , Modelos Animais de Doenças , Humanos
13.
J Virol ; 89(5): 2483-93, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25540367

RESUMO

UNLABELLED: Epstein-Barr virus (EBV) infection of B cells leads to the sequential activation of two viral promoters, Wp and Cp, resulting in the expression of six EBV nuclear antigens (EBNAs) and the viral Bcl2 homologue BHRF1. The viral transactivator EBNA2 is required for this switch from Wp to Cp usage during the initial stages of infection. EBNA2-dependent Cp transcription is mediated by the EBNA2 response element (E2RE), a region that contains at least two binding sites for cellular factors; one of these sites, CBF1, interacts with RBP-JK, which then recruits EBNA2 to the transcription initiation complex. Here we demonstrate that the B cell-specific transcription factor BSAP/Pax5 binds to a second site, CBF2, in the E2RE. Deletion of the E2RE in the context of a recombinant virus greatly diminished levels of Cp-initiated transcripts during the initial stages of infection but did not affect the levels of Wp-initiated transcripts or EBNA mRNAs. Consistent with this finding, viruses deleted for the E2RE were not markedly impaired in their ability to induce B cell transformation in vitro. In contrast, a larger deletion of the entire Cp region did reduce EBNA mRNA levels early after infection and subsequently almost completely ablated lymphoblastoid cell line (LCL) outgrowth. Notably, however, rare LCLs could be established following infection with Cp-deleted viruses, and these were indistinguishable from wild-type-derived LCLs in terms of steady-state EBV gene transcription. These data indicate that, unlike Wp, Cp is dispensable for the virus' growth-transforming activity. IMPORTANCE: Epstein-Barr virus (EBV), a B lymphotropic herpesvirus etiologically linked to several B cell malignancies, efficiently induces B cell proliferation leading to the outgrowth of lymphoblastoid cell lines (LCLs). The initial stages of this growth-transforming infection are characterized by the sequential activation of two viral promoters, Wp and Cp, both of which appear to be preferentially active in target B cells. In this work, we have investigated the importance of Cp activity in initiating B cell proliferation and maintaining LCL growth. Using recombinant viruses, we demonstrate that while Cp is not essential for LCL outgrowth in vitro, it enhances transformation efficiency by >100-fold. We also show that Cp, like Wp, interacts with the B cell-specific activator protein BSAP/Pax5. We suggest that EBV has evolved this two-promoter system to ensure efficient colonization of the host B cell system in vivo.


Assuntos
Linfócitos B/fisiologia , Linfócitos B/virologia , Transformação Celular Viral , Herpesvirus Humano 4/fisiologia , Interações Hospedeiro-Patógeno , Regiões Promotoras Genéticas , Proliferação de Células , Humanos , Ligação Proteica , Transcrição Gênica , Proteínas Virais/metabolismo
14.
J Virol ; 89(17): 9137-41, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26109734

RESUMO

Here we present evidence for previously unappreciated B-cell immune dysregulation during acute Epstein-Barr virus (EBV)-associated infectious mononucleosis (IM). Longitudinal analyses revealed that patients with acute IM have undetectable EBV-specific neutralizing antibodies and gp350-specific B-cell responses, which were associated with a significant reduction in memory B cells and no evidence of circulating antibody-secreting cells. These observations correlate with dysregulation of tumor necrosis factor family members BAFF and APRIL and increased expression of FAS on circulating B cells.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Herpesvirus Humano 4/imunologia , Mononucleose Infecciosa/imunologia , Fator Ativador de Células B/imunologia , Linfócitos B/virologia , Linfócitos T CD8-Positivos/imunologia , Proteínas do Capsídeo/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Humanos , Memória Imunológica/imunologia , Mononucleose Infecciosa/virologia , Ativação Linfocitária/imunologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia , Proteínas da Matriz Viral/imunologia , Receptor fas/metabolismo
15.
J Virol ; 89(10): 5222-37, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25787276

RESUMO

UNLABELLED: Epstein-Barr virus (EBV) infects most of the world's population and is causally associated with several human cancers, but little is known about how EBV genetic variation might influence infection or EBV-associated disease. There are currently no published wild-type EBV genome sequences from a healthy individual and very few genomes from EBV-associated diseases. We have sequenced 71 geographically distinct EBV strains from cell lines, multiple types of primary tumor, and blood samples and the first EBV genome from the saliva of a healthy carrier. We show that the established genome map of EBV accurately represents all strains sequenced, but novel deletions are present in a few isolates. We have increased the number of type 2 EBV genomes sequenced from one to 12 and establish that the type 1/type 2 classification is a major feature of EBV genome variation, defined almost exclusively by variation of EBNA2 and EBNA3 genes, but geographic variation is also present. Single nucleotide polymorphism (SNP) density varies substantially across all known open reading frames and is highest in latency-associated genes. Some T-cell epitope sequences in EBNA3 genes show extensive variation across strains, and we identify codons under positive selection, both important considerations for the development of vaccines and T-cell therapy. We also provide new evidence for recombination between strains, which provides a further mechanism for the generation of diversity. Our results provide the first global view of EBV sequence variation and demonstrate an effective method for sequencing large numbers of genomes to further understand the genetics of EBV infection. IMPORTANCE: Most people in the world are infected by Epstein-Barr virus (EBV), and it causes several human diseases, which occur at very different rates in different parts of the world and are linked to host immune system variation. Natural variation in EBV DNA sequence may be important for normal infection and for causing disease. Here we used rapid, cost-effective sequencing to determine 71 new EBV sequences from different sample types and locations worldwide. We showed geographic variation in EBV genomes and identified the most variable parts of the genome. We identified protein sequences that seem to have been selected by the host immune system and detected variability in known immune epitopes. This gives the first overview of EBV genome variation, important for designing vaccines and immune therapy for EBV, and provides techniques to investigate relationships between viral sequence variation and EBV-associated diseases.


Assuntos
Infecções por Vírus Epstein-Barr/virologia , Variação Genética , Genoma Viral , Herpesvirus Humano 4/genética , Sequência de Aminoácidos , Antígenos Virais/genética , Portador Sadio/virologia , Linhagem Celular Tumoral , DNA Viral/genética , Epitopos de Linfócito T/genética , Antígenos Nucleares do Vírus Epstein-Barr/genética , Herpesvirus Humano 4/classificação , Herpesvirus Humano 4/isolamento & purificação , Humanos , Filogenia , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Proteínas da Matriz Viral/genética
16.
Nat Rev Immunol ; 5(1): 9-20, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15630425

RESUMO

Medical advances such as allogeneic transplantation can expose patients to periods of marked immunosuppression, during which viral infections are an important cause of morbidity and mortality. Control of infection will depend ultimately on the restoration of adequate antiviral immunity, and cellular immunotherapy is an attractive approach to improving immune protection. Developments in basic immunology have led to a greater understanding of the nature of protective immunity in immunocompetent donors, and this knowledge is now being used to direct immunotherapeutic protocols. Moreover, immunological techniques that have recently been developed as research tools, such as peptide-HLA tetramers and cytokine-secretion assays, have potential application for clinical use in this setting.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Imunoterapia Adotiva , Viroses/terapia , Antígenos Virais/imunologia , Citomegalovirus/imunologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/prevenção & controle , Humanos , Terapia de Imunossupressão/efeitos adversos , Linfócitos T/imunologia , Linfócitos T/transplante , Viroses/etiologia , Viroses/imunologia
17.
J Infect Dis ; 212(12): 1957-61, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26080368

RESUMO

Acute infectious mononucleosis (IM) is associated with altered expression of inflammatory cytokines and disturbed T-cell homeostasis, however, the precise mechanism of this immune dysregulation remains unresolved. In the current study we demonstrated a significant loss of circulating myeloid and plasmacytoid dendritic cells (DCs) during acute IM, a loss correlated with the severity of clinical symptoms. In vitro exposure of blood DCs to acute IM plasma resulted in loss of plasmacytoid DCs, and further studies with individual cytokines showed that exposure to interleukin 10 could replicate this effect. Our data provide important mechanistic insight into dysregulated immune homeostasis during acute IM.


Assuntos
Células Sanguíneas/efeitos dos fármacos , Células Dendríticas/imunologia , Tolerância Imunológica , Mononucleose Infecciosa/patologia , Interleucina-10/sangue , Adolescente , Adulto , Sobrevivência Celular/efeitos dos fármacos , Humanos , Mononucleose Infecciosa/imunologia , Interleucina-10/metabolismo , Adulto Jovem
18.
J Immunol ; 191(11): 5398-409, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24146041

RESUMO

EBV elicits primary CD8(+) T cell responses that, by T cell cloning from infectious mononucleosis (IM) patients, appear skewed toward immediate early (IE) and some early (E) lytic cycle proteins, with late (L) proteins rarely targeted. However, L Ag-specific responses have been detected regularly in polyclonal T cell cultures from long-term virus carriers. To resolve this apparent difference between responses to primary and persistent infection, 13 long-term carriers were screened in ex vivo IFN-γ ELISPOT assays using peptides spanning the two IE, six representative E, and seven representative L proteins. This revealed memory CD8 responses to 44 new lytic cycle epitopes that straddle all three protein classes but, in terms of both frequency and size, maintain the IE > E > L hierarchy of immunodominance. Having identified the HLA restriction of 10 (including 7 L) new epitopes using memory CD8(+) T cell clones, we looked in HLA-matched IM patients and found such reactivities but typically at low levels, explaining why they had gone undetected in the original IM clonal screens. Wherever tested, all CD8(+) T cell clones against these novel lytic cycle epitopes recognized lytically infected cells naturally expressing their target Ag. Surprisingly, however, clones against the most frequently recognized L Ag, the BNRF1 tegument protein, also recognized latently infected, growth-transformed cells. We infer that BNRF1 is also a latent Ag that could be targeted in T cell therapy of EBV-driven B-lymphoproliferative disease.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Herpesvirus Humano 4/imunologia , Mononucleose Infecciosa/imunologia , Sequência de Aminoácidos , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , ELISPOT , Antígenos HLA/metabolismo , Humanos , Epitopos Imunodominantes/imunologia , Epitopos Imunodominantes/metabolismo , Interferon gama/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Latência Viral/imunologia
19.
J Virol ; 87(5): 2882-94, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23269792

RESUMO

Epstein-Barr virus (EBV) is present in all cases of endemic Burkitt lymphoma (BL) but in few European/North American sporadic BLs. Gene expression arrays of sporadic tumors have defined a consensus BL profile within which tumors are classifiable as "molecular BL" (mBL). Where endemic BLs fall relative to this profile remains unclear, since they not only carry EBV but also display one of two different forms of virus latency. Here, we use early-passage BL cell lines from different tumors, and BL subclones from a single tumor, to compare EBV-negative cells with EBV-positive cells displaying either classical latency I EBV infection (where EBNA1 is the only EBV antigen expressed from the wild-type EBV genome) or Wp-restricted latency (where an EBNA2 gene-deleted virus genome broadens antigen expression to include the EBNA3A, -3B, and -3C proteins and BHRF1). Expression arrays show that both types of endemic BL fall within the mBL classification. However, while EBV-negative and latency I BLs show overlapping profiles, Wp-restricted BLs form a distinct subgroup, characterized by a detectable downregulation of the germinal center (GC)-associated marker Bcl6 and upregulation of genes marking early plasmacytoid differentiation, notably IRF4 and BLIMP1. Importantly, these same changes can be induced in EBV-negative or latency I BL cells by infection with an EBNA2-knockout virus. Thus, we infer that the distinct gene profile of Wp-restricted BLs does not reflect differences in the identity of the tumor progenitor cell per se but differences imposed on a common progenitor by broadened EBV gene expression.


Assuntos
Linfoma de Burkitt/genética , Linfoma de Burkitt/virologia , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiologia , Transcriptoma , Latência Viral/genética , Antígenos Virais/biossíntese , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Antígenos Nucleares do Vírus Epstein-Barr/biossíntese , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/classificação , Humanos , Fatores Reguladores de Interferon/biossíntese , Fator 1 de Ligação ao Domínio I Regulador Positivo , Proteínas Proto-Oncogênicas c-bcl-6 , Proteínas Repressoras/biossíntese , Regulação para Cima , Proteínas Virais/biossíntese
20.
PLoS Pathog ; 8(5): e1002697, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22589726

RESUMO

Epstein-Barr virus (EBV), a lymphomagenic human herpesvirus, colonises the host through polyclonal B cell-growth-transforming infections yet establishes persistence only in IgD⁺ CD27⁺ non-switched memory (NSM) and IgD⁻ CD27⁺ switched memory (SM) B cells, not in IgD⁺ CD27⁻ naïve (N) cells. How this selectivity is achieved remains poorly understood. Here we show that purified N, NSM and SM cell preparations are equally transformable in vitro to lymphoblastoid cells lines (LCLs) that, despite upregulating the activation-induced cytidine deaminase (AID) enzyme necessary for Ig isotype switching and Ig gene hypermutation, still retain the surface Ig phenotype of their parental cells. However, both N- and NSM-derived lines remain inducible to Ig isotype switching by surrogate T cell signals. More importantly, IgH gene analysis of N cell infections revealed two features quite distinct from parallel mitogen-activated cultures. Firstly, following 4 weeks of EBV-driven polyclonal proliferation, individual clonotypes then become increasingly dominant; secondly, in around 35% cases these clonotypes carry Ig gene mutations which both resemble AID products and, when analysed in prospectively-harvested cultures, appear to have arisen by sequence diversification in vitro. Thus EBV infection per se can drive at least some naïve B cells to acquire Ig memory genotypes; furthermore, such cells are often favoured during an LCL's evolution to monoclonality. Extrapolating to viral infections in vivo, these findings could help to explain how EBV-infected cells become restricted to memory B cell subsets and why EBV-driven lymphoproliferative lesions, in primary infection and/or immunocompromised settings, so frequently involve clones with memory genotypes.


Assuntos
Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/virologia , Genes de Imunoglobulinas , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/fisiologia , Switching de Imunoglobulina , Células Cultivadas , Citidina Desaminase/biossíntese , Infecções por Vírus Epstein-Barr/imunologia , Genótipo , Herpesvirus Humano 4/patogenicidade , Humanos , Imunoglobulina D/genética , Cadeias Pesadas de Imunoglobulinas/genética , Imunoglobulina M/genética , Memória Imunológica/imunologia , Mutação , Hipermutação Somática de Imunoglobulina , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA