Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Metab Brain Dis ; 38(6): 2105-2114, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37099078

RESUMO

Maple syrup urine disease (MSUD) is an inherited metabolic disorder caused by a deficiency in branched-chain alpha-ketoacid dehydrogenase complex (BCKAC). The treatment is a standard therapy based on a protein-restricted diet with low branched-chain amino acids (BCAA) content to reduce plasma levels and, consequently, the effects of accumulating their metabolites, mainly in the central nervous system. Although the benefits of dietary therapy for MSUD are undeniable, natural protein restriction may increase the risk of nutritional deficiencies, resulting in a low total antioxidant status that can predispose and contribute to oxidative stress. As MSUD is related to redox and energy imbalance, melatonin can be an important adjuvant treatment. Melatonin directly scavenges the hydroxy radical, peroxyl radical, nitrite anion, and singlet oxygen and indirectly induces antioxidant enzyme production. Therefore, this study assesses the role of melatonin treatment on oxidative stress in brain tissue and behavior parameters of zebrafish (Danio rerio) exposed to two concentrations of leucine-induced MSUD: leucine 2 mM and 5mM; and treated with 100 nM of melatonin. Oxidative stress was assessed through oxidative damage (TBARS, DCF, and sulfhydryl content) and antioxidant enzyme activity (SOD and CAT). Melatonin treatment improved redox imbalance with reduced TBARS levels, increased SOD activity, and normalized CAT activity to baseline. Behavior was analyzed with novel object recognition test. Animals exposed to leucine improved object recognition due to melatonin treatment. With the above, we can suggest that melatonin supplementation can protect neurologic oxidative stress, protecting leucine-induced behavior alterations such as memory impairment.


Assuntos
Doença da Urina de Xarope de Bordo , Melatonina , Animais , Leucina/efeitos adversos , Leucina/metabolismo , Doença da Urina de Xarope de Bordo/metabolismo , Peixe-Zebra/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Melatonina/farmacologia , Melatonina/uso terapêutico , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Estresse Oxidativo , Aminoácidos de Cadeia Ramificada/metabolismo , Superóxido Dismutase/metabolismo
2.
Purinergic Signal ; 18(3): 307-315, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35687211

RESUMO

Gallic acid (GA) is a secondary metabolite found in plants. It has the ability to cross the blood-brain barrier and, through scavenging properties, has a protective effect in a brain insult model. Alcohol metabolism generates reactive oxygen species (ROS); thus, alcohol abuse has a deleterious effect on the brain. The zebrafish is a vertebrate often used for screening toxic substances and in acute ethanol exposure models. The aim of this study was to evaluate whether GA pretreatment (24 h) prevents the changes induced by acute ethanol exposure (1 h) in the purinergic signaling pathway in the zebrafish brain via degradation of extracellular nucleotides and oxidative stress. The nucleotide cascade promoted by the nucleoside triphosphate diphosphohydrolase (NTPDase) and 5'-nucleotidase was assessed by quantifying nucleotide metabolism. The effect of GA alone at 5 and 10 mg L-1 did not change the nucleotide levels. Pretreatment with 10 mg L-1 GA prevented an ethanol-induced increase in ATP and ADP levels. No significant difference was found between the AMP levels of the two pretreatment groups. Pretreatment with 10 mg L-1 GA prevented ethanol-enhanced lipid peroxidation and dichlorodihydrofluorescein (DCFH) levels. The higher GA concentration was also shown to positively modulate against ethanol-induced effects on superoxide dismutase (SOD), but not on catalase (CAT). This study demonstrated that GA prevents the inhibitory effect of ethanol on NTPDase activity and oxidative stress parameters, thus consequently modulating nucleotide levels that may contribute to the possible protective effects induced by alcohol and purinergic signaling.


Assuntos
Etanol , Peixe-Zebra , Animais , Encéfalo/metabolismo , Etanol/metabolismo , Etanol/toxicidade , Ácido Gálico/metabolismo , Ácido Gálico/farmacologia , Nucleotídeos/metabolismo , Estresse Oxidativo , Purinas/metabolismo , Peixe-Zebra/metabolismo
3.
Metab Brain Dis ; 37(8): 2925-2935, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36040712

RESUMO

Maple Syrup Urine Disease (MSUD) is a metabolic disorder characterized by high levels in blood and urine of branched-chain amino acids leucine, isoleucine, and valine and their alpha-ketoacids, by a partial or total blockade in the activity of branched-chain complex alpha-keto acids dehydrogenase. The main symptoms in MSUD occur in the central nervous system, including cognitive deficits, locomotor, poor feeding, seizures, psychomotor delay, and mental retardation, but the mechanisms of neurotoxicity and behavior alteration due to this disease are poorly understood, thus this study aimed at showing the effects of leucine exposure on glutamate levels and behavior in zebrafish. For this, we analyzed the behavior using the social preference test and novel object recognition test, moreover, we analyse the glutamate levels and uptake using scintillation and high-performance liquid chromatography methods. Our results demonstrated a decrease in glutamate levels and uptake, accompanied by memory and social impairment. In conclusion, these results suggest that alterations in glutamate levels can be associated with behavior impairment, however, more studies are necessary to understand the mechanisms for brain damage in MSUD.


Assuntos
Doença da Urina de Xarope de Bordo , Peixe-Zebra , Animais , Leucina , Ácido Glutâmico , Doença da Urina de Xarope de Bordo/metabolismo , Aminoácidos de Cadeia Ramificada/farmacologia
4.
Neurochem Res ; 45(7): 1526-1535, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32185643

RESUMO

Chronic and/or excessive consumption of alcohol followed by reduced consumption or abstention can result in Alcohol Withdrawal Syndrome. A number of behavioral changes and neurological damage result from ethanol (EtOH) withdrawal. Ceftriaxone (Cef) modulates the activity of excitatory amino acid transporters by increasing their gene expression. Zebrafish are commonly used to study alcohol exposure. The aim of this study was to evaluate the influence of Cef (100 µM) on behavior patterns, glutamate transport activity, and oxidative stress in zebrafish brains subjected to EtOH (0.3% v/v) withdrawal. The exploratory tests using Novel tank showed that EtOH withdrawal promoted a decrease in the time spent and number of entries of in the bottom displaying an anxiety-like behavior. In contrast, treatment with Cef resulted in recovery of exploratory behavioral patterns. Ceftriaxone treatment resulted in increased glutamate uptake in zebrafish subjected to EtOH withdrawal. Furthermore, EtOH withdrawal increased reactive species, as determined using thiobarbituric acid and dichlorodihydrofluorescein assays. Treatment with Cef reversed these effects. Ceftriaxone promoted a significant reduction in brain sulfhydryl content in zebrafish subjected to EtOH withdrawal. Therefore, Cef treatment in conjunction with EtOH withdrawal induced anxiolytic-like effects due to possible neuromodulation of glutamatergic transporters, potentially through mitigation of oxidative stress.


Assuntos
Ansiedade/metabolismo , Encéfalo/metabolismo , Ceftriaxona/uso terapêutico , Etanol/efeitos adversos , Ácido Glutâmico/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/psicologia , Animais , Ansiedade/tratamento farmacológico , Ansiedade/psicologia , Encéfalo/efeitos dos fármacos , Ceftriaxona/farmacologia , Etanol/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Síndrome de Abstinência a Substâncias/prevenção & controle , Síndrome de Abstinência a Substâncias/psicologia , Peixe-Zebra
5.
Artigo em Inglês | MEDLINE | ID: mdl-39181308

RESUMO

Alcohol is a harmful drug, and reducing its consumption is a significant challenge for users. Furthermore, alcohol dependence is often treatment-resistant, and no completely effective treatment model is available for chemical dependence. Classic psychedelics, such as LSD, psilocybin, and ayahuasca have been used in different clinical and pre-clinical trials, demonstrating promising pharmacotherapeutic effects in the treatment of treatment-resistant psychopathological conditions, such as addiction, especially related to alcohol dependence. In this work, we conducted a narrative review of the emerging research regarding the potential of psychedelics for alcohol use disorder treatment. Psychedelic substances have demonstrated potential for treating drug addiction, especially AUD, mostly by modulating neuroplasticity in the brain. Given that serotonergic psychedelics do not produce physical dependence or withdrawal symptoms with repeated use, they may be considered promising treatment options for managing drug use disorders. However, certain limitations could be found. Although many participants achieve positive results with only one treatment dose in clinical studies, great inter-individual variability exists in the duration of these effects. Therefore, further studies using different doses and experimental protocols should be conducted to enhance evidence about psychedelic substances.

6.
Behav Brain Res ; 474: 115176, 2024 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098400

RESUMO

Alcohol is the most consumed addictive substance worldwide that elicits multiple health problems. Consumption of alcoholic beverages by pregnant women is of great concern because pre-natal exposure can trigger fetal alcohol spectrum disorder (FASD). This disorder can significantly change the embryo's normal development, mainly by affecting the central nervous system (CNS), leading to neurobehavioral consequences that persist until adulthood. Among the harmful effects of FASD, the most reported consequences are cognitive and behavioral impairments. Alcohol interferes with multiple pathways in the brain, affecting memory by impairing neurotransmitter systems, increasing the rate of oxidative stress, or even activating neuroinflammation. Here, we aimed to evaluate the deleterious effects of alcohol on the cholinergic signaling and memory in a FASD zebrafish model, using inhibitory avoidance and novel object recognition tests. Four months after the embryonic exposure to ethanol, the behavioral tests indicated that ethanol impairs memory. While both ethanol concentrations tested (0.5 % and 1 %) disrupted memory acquisition in the inhibitory avoidance test, 1 % ethanol impaired memory in the object recognition test. Regarding the cholinergic system, 0.5 % ethanol decreased ChAT and AChE activities, but the relative gene expression did not change. Overall, we demonstrated that FASD model in zebrafish impairs memory in adult individuals, corroborating the memory impairment associated with embryonic exposure to ethanol. In addition, the cholinergic system was also affected, possibly showing a relation with the cognitive impairment observed.


Assuntos
Modelos Animais de Doenças , Etanol , Transtornos do Espectro Alcoólico Fetal , Transmissão Sináptica , Peixe-Zebra , Animais , Etanol/farmacologia , Etanol/efeitos adversos , Transtornos do Espectro Alcoólico Fetal/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Feminino , Memória/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Masculino , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Gravidez
7.
Life (Basel) ; 13(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37629578

RESUMO

The Amaryllidaceae family constitutes an interesting source of exclusive alkaloids with a broad spectrum of biological activity. Galanthamine, the most relevant one, has been commercialized for the palliative treatment of Alzheimer's disease symptoms since 2001 due to its potential as an acetylcholinesterase (AChE) inhibitor. In vitro screenings against AChE by applying different Amaryllidaceae species and alkaloids have been reported in the literature; however, they are usually carried out using purified market enzymes. The main goal of this work is to evaluate the AChE inhibitory potential of Hippeastrum papilio (Amaryllidaceae) extracts using zebrafish brain homogenates. The biological assays show that the H. papilio bulb extracts present an interesting AChE inhibitory activity in comparison with the positive reference control galanthamine (IC50 values of 1.20 ± 0.10 and 0.79 ± 0.15 µg/mL, respectively). The chemical profile of H. papilio shows that this species has a high amount of galanthamine, which may contribute to the inhibitory effect on AChE activity of zebrafish brains. Computational experiments were used to build the model for zebrafish AChE and to evaluate the interactions between galanthamine and the enzymic active site. This work suggests that zebrafish could represent an important model in the search for bioactive molecules from the Amaryllidaceae family for the treatment of Alzheimer's disease.

8.
Life Sci ; 312: 121200, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435227

RESUMO

Animal models of cerebral ischemia have improved our understanding of the pathophysiology and mechanisms involved in stroke, as well as the investigation of potential therapies. The potential of zebrafish to model human diseases has become increasingly evident. The availability of these models allows for an increased understanding of the role of chemical exposure in human conditions and provides essential tools for mechanistic studies of disease. To evaluate the potential neuroprotective properties of minocycline against ischemia and reperfusion injury in zebrafish and compare them with other standardized models. In vitro studies with BV-2 cells were performed, and mammalian transient middle cerebral artery occlusion (tMCAO) was used as a comparative standard with the zebrafish stroke model. Animals were subjected to ischemia and reperfusion injury protocols and treated with minocycline. Infarction size, cytokine levels, oxidative stress, glutamate toxicity, and immunofluorescence for microglial activation, and behavioral test results were determined and compared. Administration of minocycline provided significant protection in the three stroke models in different parameters analyzed. Both experimental models complement each other in their particularities. The proposal also strengthens the findings in the literature in rodent models and allows the validation of alternative models so that they can be used in further research involving diseases with ischemia and reperfusion injury.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Humanos , Peixe-Zebra , Minociclina/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Modelos Animais de Doenças , Mamíferos
9.
J Neural Transm (Vienna) ; 119(3): 319-27, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21847557

RESUMO

We have previously shown that pharmacological blockade of the gastrin-releasing peptide receptor (GRPR) during the neonatal period in rats produces behavioral features of developmental neuropsychiatric disorders. Here, we show that social interaction deficits in this model are reversed by the atypical antipsychotic clozapine given in the adulthood. In addition, we analyzed the mRNA expression of three neuronal receptors potentially involved in the etiology of disorders of the autism spectrum. Rats were injected with the GRPR antagonist RC-3095 or saline (SAL) from postnatal days 1-10, and tested for social behavior and recognition memory in the adulthood. One hour prior to the behavioral testing, rats were given a systemic injection of clozapine or saline. The mRNA expression of the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptor, the epidermal growth factor receptor (EGFR), and GRPR was measured in the hippocampus and cortex of a separate set of rats given RC-3095 or SAL neonatally. Rats given neonatal RC-3095 showed decreased social interaction and impaired object recognition memory. Clozapine rescued the social interaction impairment. Neonatal treatment with RC-3095 also resulted in dose-dependent decreases in the expression of GRPR, NR1, and EGFR in the cortex, whereas all three receptor mRNAs were increased in the hippocampus in rats treated with the lower dose of RC-3095. The results contribute to further validate the novel rat model of neurodevelopmental disorders induced by GRPR blockade, and shows alterations in the expression of neuronal receptors in this model.


Assuntos
Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Clozapina/farmacologia , Receptores da Bombesina/antagonistas & inibidores , Comportamento Social , Animais , Bombesina/análogos & derivados , Bombesina/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Wistar , Receptores da Bombesina/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos
10.
Mol Biol Rep ; 39(3): 3281-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21706162

RESUMO

Sirtuins (SIRTs) are NAD(+)-dependent deacetylases that catalyze the hydrolysis of acetyl-lysine residues. They play an important role in many physiological and pathophysiological processes, such as the regulation of lifespan and the prevention of metabolic diseases. In this study, we analyzed the effect of resveratrol on the gene expression levels of SIRT1, SIRT3, SIRT4, PGC1α, and NAMPT, as well as its effect on NAD(+) and NADH levels, in the liver of non stressed or non impaired wild-type zebrafish. Semiquantative RT-PCR assays showed that resveratrol did not change the mRNA levels of SIRT1 and PGC1α but decreased the expression levels of the SIRT3, SIRT4, and NAMPT genes. The decrease in NAMPT mRNA levels was accompanied by an increase in NADH levels, thereby decreasing the NAD(+)/H ratio. Taken together, our results suggest that resveratrol plays a modulatory role in the transcription of the NAMPT, SIRT3, and SIRT4 genes. Zebrafish is an interesting tool that can be used to understand the mechanisms of SIRTs and NAMPT metabolism and to help develop therapeutic compounds. However, further investigations using healthy experimental animals are required to study the modulation of the SIRT and NAMPT genes by resveratrol before it is used as a nutraceutical compound in healthy humans.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Estilbenos/farmacologia , Peixe-Zebra/metabolismo , Análise de Variância , Animais , Primers do DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/fisiologia , NAD , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Resveratrol , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética
11.
Dev Neurobiol ; 82(1): 29-40, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34687497

RESUMO

The harmful consumption of ethanol is associated with significant health problems and social burdens. This drug activates a complex network of reward mechanisms and habit formation learning that is supposed to contribute to the consumption of increasingly high and frequent amounts, ultimately leading to addiction. In the context of fetal alcohol spectrum disorders, fetal alcohol syndrome (FAS) is a consequence of the harmful use of alcohol during pregnancy, which affects the embryonic development of the fetus. FAS can be easily reproduced in zebrafish by exposing the embryos to different concentrations of ethanol in water. In this regard, the aim of the present review is to discuss the late pathological implications in zebrafish exposed to ethanol at the embryonic stage, providing information in the context of human fetal alcoholic spectrum disorders. Experimental FAS in zebrafish is associated with impairments in the metabolic, morphological, neurochemical, behavioral, and cognitive domains. Many of the pathways that are affected by ethanol in zebrafish have at least one ortholog in humans, collaborating with the wider adoption of zebrafish in studies on alcohol disorders. In fact, zebrafish present validities required for the study of these conditions, which contributes to the use of this species in research, in addition to studies with rodents.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Peixe-Zebra , Animais , Embrião não Mamífero , Desenvolvimento Embrionário , Etanol/toxicidade , Feminino , Transtornos do Espectro Alcoólico Fetal/metabolismo , Transtornos do Espectro Alcoólico Fetal/psicologia , Gravidez
12.
Mol Neurobiol ; 59(1): 266-275, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34665406

RESUMO

Status epilepticus (SE) develops from abnormal electrical discharges, resulting in neuronal damage. Current treatments include antiepileptic drugs. However, the most common drugs used to treat seizures may sometimes be ineffective and have many side effects. Melatonin is an endogenous physiological hormone that is considered an alternative treatment for neurological disorders because of its free radical scavenging property. Thus, this study aimed to determine the effects of melatonin pretreatment on SE by inducing glutamatergic hyperstimulation in zebrafish. Seizures were induced in zebrafish using kainic acid (KA), a glutamate analog, and the seizure intensity was recorded for 60 min. Melatonin treatment for 7 days showed a decrease in seizure intensity (28%), latency to reach score 5 (14 min), and duration of SE (29%). In addition, melatonin treatment attenuated glutamate transporter levels, which significantly decreased in the zebrafish brain after 12 h of KA-induced seizures. Melatonin treatment reduced the increase in oxidative stress by reactive oxygen species formation through thiobarbituric acid reactive substances and 2',7'-dichiorofluorescin, induced by KA-seizure. An imbalance of antioxidant enzyme activities such as superoxide dismutase and catalase was influenced by melatonin and KA-induced seizures. Our study indicates that melatonin promotes a neuroprotective response against the epileptic profile in zebrafish. These effects could be related to the modulation of glutamatergic neurotransmission, recovery of glutamate uptake, and oxidative stress parameters in the zebrafish brain.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Ácido Glutâmico/metabolismo , Ácido Caínico/toxicidade , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estado Epiléptico/prevenção & controle , Animais , Antioxidantes/farmacologia , Catalase/metabolismo , Glutationa/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Superóxido Dismutase/metabolismo , Peixe-Zebra
13.
Neurotoxicology ; 89: 92-98, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065950

RESUMO

Fluoride is an essential chemical found in dental preparations, pesticides and drinking water. Excessive fluoride exposure is related to toxicological and neurological disruption. Zebrafish are used in translational approaches to understand neurotoxicity in both biomedical and environmental areas. However, there is no complete knowledge about the cumulative effects of fluoride on neurotransmission systems. Therefore, the aim of this study was to evaluate whether prolonged exposure to sodium fluoride (NaF) alters cholinergic and glutamatergic systems and oxidative stress homeostasis in the zebrafish brain. Adult zebrafish were used, divided into four experimental groups, one control group and three groups exposed to NaF at 30, 50 and 100 mg.L-1 for a period of 30 days. After NaF at 30 mg.L-1 exposure, there were significant decreases in acetylcholinesterase (29.8 %) and glutamate uptake (39.3 %). Furthermore, thiobarbituric acid-reactive species were decreased at NaF 50 mg.L-1 (32.7 %), while the group treated with NaF at 30 mg.L-1 showed an increase in dichlorodihydrofluorescein oxidation (41.4 %). NaF at 30 mg.L-1 decreased both superoxide dismutase (55.3 %) and catalase activities (26.1 %). The inhibitory effect observed on cholinergic and glutamatergic signalling mechanisms could contribute to the neurodegenerative events promoted by NaF in the zebrafish brain.


Assuntos
Encéfalo , Fluoretos , Estresse Oxidativo , Transmissão Sináptica , Peixe-Zebra , Acetilcolinesterase/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Fluoretos/efeitos adversos , Transmissão Sináptica/efeitos dos fármacos , Peixe-Zebra/metabolismo
14.
Neurotoxicology ; 88: 57-64, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34728274

RESUMO

High ethanol (EtOH) consumption is a serious condition that induces tremors, alcoholic psychosis, and delirium, being considered a public health problem worldwide. Prolonged EtOH exposure promotes neurodegeneration, affecting several neurotransmitter systems and transduction signaling pathways. Glutamate is the major excitatory amino acid in the central nervous system (CNS) and the extracellular glutamatergic tonus is controlled by glutamate transporters mostly located in astrocytes. Here, we explore the effects of prolonged EtOH exposure on the glutamatergic uptake system and its relationship with astroglial markers (GFAP and S100B), neuroinflammation (IL-1ß and TNF-α), and brain derived neurotrophic factor (BDNF) levels in the CNS of adult zebrafish. Animals were exposed to 0.5% EtOH for 7, 14, and 28 days continuously. Glutamate uptake was significantly decreased after 7 and 14 days of EtOH exposure, returning to baseline levels after 28 days of exposure. No alterations were observed in crucial enzymatic activities linked to glutamate uptake, like Na,K-ATPase or glutamine synthetase. Prolonged EtOH exposure increased GFAP, S100B, and TNF-α levels after 14 days. Additionally, increased BDNF mRNA levels were observed after 14 and 28 days of EtOH exposure, while BDNF protein levels increased only after 28 days. Collectively, our data show markedly brain astroglial, neuroinflammatory and neurotrofic responses after an initial impairment of glutamate uptake following prolonged EtOH exposure. This neuroplasticity event could play a key role in the modulatory effect of EtOH on glutamate uptake after 28 days of continuous exposure.


Assuntos
Encéfalo/efeitos dos fármacos , Etanol/efeitos adversos , Gliose/induzido quimicamente , Ácido Glutâmico/metabolismo , Doenças Neuroinflamatórias/induzido quimicamente , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Gliose/patologia , Interleucina-1beta/metabolismo , Masculino , Doenças Neuroinflamatórias/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , ATPase Trocadora de Sódio-Potássio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
15.
Exp Gerontol ; 166: 111873, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35760268

RESUMO

INTRODUCTION: The consumption of soft drinks has increased considerably in recent decades, mainly cola soft drinks. Excessive consumption of cola-based soft drinks is associated with several diseases and cognitive decline, particularly memory impairment. Furthermore, diets with high sugar can promote insulin resistance, metabolic syndrome, and dyslipidemia. AIM: Thus, the present study aimed to evaluate the effect of cola soft drink intake on behavioral alterations and oxidative damage in 2-, 8- and 14- month-old male Wistar rats. METHODS: The soft drink groups drank soft drink and/or water ad libitum during 67 days, the control groups ingested only water. Radial-arm maze and Y-maze were used to evaluate spatial memory, open-field to evaluate the habituation memory, and inhibitory avoidance to evaluate aversive memory. The behavioral tests started at the day 57 and finished at day 67 of treatment. At 68th day, the rats were killed; frontal cortex and hippocampus were dissected to the analysis of antioxidants enzymes catalase (CAT) and superoxide dismutase (SOD); and the oxidative markers thiobarbituric acid reactive substances (TBARS) and dichloro-dihydro-fluorescein diacetate (DCFH) were measured in the hippocampus. RESULTS AND DISCUSSION: The cola-based soft drink intake caused memory impairment in the radial-arm maze, Y-maze task, and open-field in the 2- and 8-month-old rat, but not in the 14-month-old. There were no difference among groups in the inhibitory avoidance test. In the frontal cortex, soft drink intake reduced CAT activity in the 8-month-old rats and SOD activity in the 8- and 14-month-old rats. In the hippocampus, the soft drink increased CAT activity in 2- and 8-month-old rats, increased DCFH levels at all ages, and increased TBARS levels in 2-month-rats. Therefore, the results show that long-term soft drink intake leads to memory impairment and oxidative stress. The younger seems to be more susceptible to the soft drink alterations on behavior; however, soft drink caused alterations in the oxidative system at all ages evaluated.


Assuntos
Transtornos da Memória , Estresse Oxidativo , Animais , Antioxidantes/farmacologia , Bebidas Gaseificadas/efeitos adversos , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Água/metabolismo , Água/farmacologia
16.
Fish Physiol Biochem ; 37(3): 573-81, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21194010

RESUMO

Iron is one the most abundant metals on the earth being essential for living organisms even though its free form can be toxic. The overload of this metal may be related with some disorders, like Alzheimer and Parkinson diseases, and hemochromatosis in the liver. The aim of the present study was to evaluate the effects of iron on acetylcholinesterase (AChE) activity in brain and liver of zebrafish and to investigate the possible correlation with the iron content in these tissues. Different corresponding concentrations of iron were tested using in vitro (0.018, 0.268, and 2.6 mM) and in vivo (1, 15, and 150 mg/l) assays. The in vitro studies showed that iron promoted a significant increase in AChE activity in brain (52%) and liver (53%) at the higher concentration (2.6 mM). In the in vivo assays, a significant increase in this enzyme activity was observed in the presence of 15 mg/l in both, brain (62%) and liver tissue (70%). Semiquantitative RT-PCR did not reveal significant changes in acetylthiocholinesterase mRNA levels. Moreover, we observed that iron content was significantly increased in liver tissue when exposed to 15 (226%) and 150 mg/l (200%). These results indicate that iron can promote significant alterations in AChE activity which probably is not directly related to the iron content in zebrafish tissues.


Assuntos
Acetilcolinesterase/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Ferro/toxicidade , Peixe-Zebra/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Relação Dose-Resposta a Droga , Feminino , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino
17.
Neuroscience ; 457: 41-50, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465408

RESUMO

Gold nanoparticles (GNP) have emerged as an alternative to biomaterials in biomedical applications. Research has clearly demonstrated the relative safety and low toxicity of these molecules. However, the possible neuroprotective effect of GNP on the central nervous system (CNS) and its relationship with neurological and psychiatric disorders remain unclear. Zebrafish is a reliable model to investigate the impact of ethanol (EtOH) consumption on the CNS, including reward signaling such as the cholinergic neurotransmission system. Here, we investigated whether cotreatment or pretreatment with GNP prevented EtOH-induced changes in acetylcholinesterase activity and oxidative stress in the brain of zebrafish. We exposed adult zebrafish to 2.5 mg·L-1 GNP 1 h prior to EtOH (1% v/v) treatment for 1 h, and cotreated adult zebrafish simultaneously with both substances for 1 h. Pretreatment with GNP did not prevent EtOH-induced increase in the acetylcholinesterase activity, whereas cotreatment with 2.5 mg·L-1 GNP and EtOH protected against this increase. The results also suggested similar protective effect on oxidative stress parameters in the zebrafish pretreated with GNP at 2.5 mg·L-1. GNP significantly decreased the levels of thiobarbituric acid reactive species and dihydrodichlorofluorescein levels when cotreated with EtOH. GNP also prevented EtOH-induced increase in superoxide dismutase and catalase activities, suggesting a modulatory role of GNP in enzymatic antioxidant defenses. Our results showed that GNP was able to modulate the disruption of cholinergic and oxidative homeostasis in the brain of zebrafish. These findings indicate for the first time that zebrafish is an interesting perspective to investigate nanoparticles against disorders related to alcohol abuse.


Assuntos
Nanopartículas Metálicas , Peixe-Zebra , Acetilcolinesterase/metabolismo , Animais , Etanol/toxicidade , Ouro , Estresse Oxidativo , Peixe-Zebra/metabolismo
18.
Neuroscience ; 455: 251-262, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33285238

RESUMO

Gallic acid (GA) is a polyphenolic compound that has attracted significant interest due to its antioxidant action through free radical elimination and metal chelation. Ethanol is a highly soluble psychoactive substance, and its toxicity is associated with oxidative stress. In this context, the purpose of the present study was to investigate the effect of GA on neurochemical changes in zebrafish brains exposed to ethanol. GA was first analyzed in isolation by treating the animals at concentrations of 5, 10, and 20 mg/L for 24 h and 48 h. The results revealed that the group exposed to 20 mg/L over a 24/48 h period exhibited increases in thiobarbituric acid reactive substance (TBA-RS) levels and 2',7'-dichlorofluorescein (DCFH) oxidation, demonstrating a pro-oxidant profile. Moreover, decrease in acetylcholinesterase (AChE) enzyme activity was observed. To investigate the effects of GA after ethanol exposure, the animals were divided into four groups: control; those exposed to 0.5% ethanol for 7 days; those exposed to 0.5% ethanol for 7 days and treated with GA at 5 and 10 mg/L on day 8. Treatment with GA at 5 and 10 mg/L reversed impairment of choline acetyltransferase activity and the damage to TBA-RS levels, DCFH oxidation, and superoxide dismutase activity induced by ethanol. Results of the present study suggest that GA treatment (20 mg/L) appeared to disrupt oxidative parameters in the zebrafish brain. GA treatment at 5 and 10 mg/L reversed alterations to the cholinergic system induced by prolonged exposure to ethanol in the zebrafish brain, probably through an antioxidant mechanism.


Assuntos
Encéfalo , Etanol , Ácido Gálico , Animais , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Etanol/toxicidade , Ácido Gálico/farmacologia , Estresse Oxidativo , Peixe-Zebra
19.
Neurotoxicology ; 78: 152-160, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32173352

RESUMO

Fetal alcohol spectrum disorders (FASD) describe a wide range of ethanol-induced developmental disabilities, including craniofacial dysmorphology, and neurochemical and behavioral impairments. Zebrafish has become a popular animal model to evaluate the long-lasting effects of, both, severe and milder forms of FASD, including alterations to neurotransmission. Glutamate is one of the most affected neurotransmitter systems in ethanol-induced developmental disabilities. Therefore, the aim of the present study was to evaluate the functionality of the glutamatergic neurotransmitter system in an adult zebrafish FASD model. Zebrafish larvae (24 h post-fertilization) were exposed to ethanol (0.1 %, 0.25 %, 0.5 %, and 1%) for 2 h. After 4 months, the animals were euthanized and their brains were removed. The following variables were measured: glutamate uptake, glutamate binding, glutamine synthetase activity, Na+/K + ATPase activity, and high-resolution respirometry. Embryonic ethanol exposure reduced Na+-dependent glutamate uptake in the zebrafish brain. This reduction was positively modulated by ceftriaxone treatment, a beta-lactam antibiotic that promotes the expression of the glutamate transporter EAAT2. Moreover, the 0.5 % and 1% ethanol groups demonstrated reduced glutamate binding to brain membranes and decreased Na+/K + ATPase activity in adulthood. In addition, ethanol reduced glutamine synthetase activity in the 1% EtOH group. Embryonic ethanol exposure did not alter the immunocontent of the glutamate vesicular transporter VGLUT2 and the mitochondrial energetic metabolism of the brain in adulthood. Our results suggest that embryonic ethanol exposure may cause significant alterations in glutamatergic neurotransmission in the adult zebrafish brain.


Assuntos
Etanol/toxicidade , Transtornos do Espectro Alcoólico Fetal/fisiopatologia , Ácido Glutâmico/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Antibacterianos/administração & dosagem , Ceftriaxona/administração & dosagem , Modelos Animais de Doenças , Feminino , Glutamato-Amônia Ligase/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Peixe-Zebra
20.
Toxicol In Vitro ; 23(1): 78-82, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18996465

RESUMO

Haloperidol (HAL), olanzapine (OLZ), and sulpiride (SULP) are antipsychotic drugs widely used in the pharmacotherapy of psychopathological symptoms observed in schizophrenia or mood-related psychotic symptoms in affective disorders. Here, we tested the in vitro effects of different concentrations of a typical (HAL) and two atypical (OLZ and SULP) antipsychotic drugs on ectonucleotidase activities from zebrafish brain membranes. HAL inhibited ATP (28.9%) and ADP (26.5%) hydrolysis only at 250 microM. OLZ decreased ATPase activity at all concentrations tested (23.8-60.7%). SULP did not promote significant changes on ATP hydrolysis but inhibited ADP hydrolysis at 250 microM (25.6%). All drugs tested, HAL, OLZ, and SULP, did not promote any significant changes on 5'-nucleotidase activity in the brain membranes of zebrafish. These findings demonstrated that antipsychotic drugs could inhibit NTPDase activities whereas did not change 5'-nucleotidase. Such modulation can alter the adenosine levels, since the ectonucleotidase pathway is an important source of extracellular adenosine. Thus, it is possible to suggest that changes promoted by antipsychotic drugs in the bilayer membrane could alter the NTPDase activities, modulating extracellular ATP and adenosine levels.


Assuntos
5'-Nucleotidase/metabolismo , Encéfalo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Membranas Intracelulares/efeitos dos fármacos , Nucleosídeo-Trifosfatase/metabolismo , 5'-Nucleotidase/antagonistas & inibidores , Animais , Antipsicóticos/farmacologia , Benzodiazepinas/farmacologia , Encéfalo/enzimologia , Relação Dose-Resposta a Droga , Feminino , Haloperidol/farmacologia , Hidrólise , Membranas Intracelulares/enzimologia , Masculino , Nucleosídeo-Trifosfatase/antagonistas & inibidores , Olanzapina , Sulpirida/farmacologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA