Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(21): 14587-14592, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38716882

RESUMO

The ability to controllably move gaseous ions is an essential aspect of ion-based spectrometry (e.g., mass spectrometry and ion mobility spectrometry) as well as materials processing. At higher pressures, ion motion is largely governed by diffusion and multiple collisions with neutral gas molecules. Thus, high-pressure ion optics based on electrostatics require large fields, radio frequency drives, complicated geometries, and/or partially transmissive grids that become contaminated. Here, we demonstrate that low-power standing acoustic waves can be used to guide, block, focus, and separate beams of ions akin to electrostatic ion optics. Ions preferentially travel through the static-pressure regions ("nodes") while neutral gas does not appear to be impacted by the acoustic field structure and continues along a straight trajectory. This acoustic ion manipulation (AIM) approach has broad implications for ion manipulation techniques at high pressure, while expanding our fundamental understanding of the behavior of ions in gases.

2.
Anal Chem ; 95(8): 4190-4195, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36794939

RESUMO

The combination of acoustically levitated droplets, mid-IR laser evaporation, and subsequent post-ionization by secondary electrospray ionization was applied for monitoring the enzymatic digestion of various proteins. Acoustically levitated droplets are an ideal, wall-free model reactor, readily allowing compartmentalized microfluidic trypsin digestions. Time-resolved interrogation of the droplets yielded real-time information on the progress of the reaction and thus provided insights into reaction kinetics. After 30 min of digestion in the acoustic levitator, the obtained protein sequence coverages were identical to the reference overnight digestions. Importantly, our results clearly demonstrate that the applied experimental setup can be used for the real-time investigation of chemical reactions. Furthermore, the described methodology only uses a fraction of the typically applied amounts of solvent, analyte, and trypsin. Thus, the results exemplify the use of acoustic levitation as a green analytical chemistry alternative to the currently used batch reactions.


Assuntos
Acústica , Proteínas , Proteólise , Tripsina/química , Espectrometria de Massas , Proteínas/análise
3.
Anal Chem ; 94(49): 16992-16996, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36450044

RESUMO

The composition of acoustically levitated droplets was probed by a novel combination of mid-IR laser evaporation and subsequent postionization via secondary electrospray ionization. The combination of microliter samples and subnanoliter sampling provided time-resolved interrogation of droplets and allowed for a kinetic investigation of the laser-induced release of the analyte, which was found to strongly depend on the analytes. The observed substance-specific delayed release of the analytes permitted baseline-separated discrimination of the analytes, ideal for the study of complex samples. The additionally applied postionization scheme was found to enable efficient detection of small volatile compounds as well as peptides. The detection of small molecules and peptides occurred under very different sampling geometries, pointing to two distinct underlying ionization mechanisms. Overall, our results suggest that the experimental setup presented in this study can serve as a widely applicable platform to study chemical reactions in acoustically levitated droplets as model reactors.


Assuntos
Terapia a Laser , Espectrometria de Massas , Lasers , Peptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos
4.
Diabetes Obes Metab ; 24(12): 2411-2419, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35892256

RESUMO

AIM: To report the in vitro and in vivo preclinical pharmacokinetic (PK) and pharmacodynamic (PD) properties of RA15127343, a novel ultralong-acting insulin analogue targeting once-weekly administration, in female Göttingen minipigs. METHODS: In vitro binding and activation of human insulin receptor isoforms (IR-A/IR-B), glucose uptake in rat myocytes, as well as mitogenic activity of RA15127343 were evaluated. In vivo, the PK and PD activities of RA15127343 were assessed in female, normoglycaemic Göttingen minipigs. The half-life (t1/2 ) and time to maximum plasma concentration (Tmax ) of subcutaneously (SC) administered RA15127343 (10/30/45/60 nmol/kg) were estimated. In vivo blood glucose and endogenous plasma C-peptide concentrations after single SC administration (10/30/45/60 nmol/kg) or repeated dosing (15 nmol/kg) were analysed. RESULTS: In comparison to human insulin, RA15127343 showed lower in vitro binding affinity (19.9/6.31 µM vs. 1.10/1.14 nM) and activation (2.054 µM/669.6 nM vs. 26.04/18.24 nM) of IR-A/IR-B, lower potency to activate glucose uptake (855.2 vs. 3.37 nM) and lower mitogenic activity (17.92 µM vs. 10.78 nM; proliferation in MCF7 cells). In vivo, the mean t1/2 and Tmax of RA15127343 after SC administration ranged from 48 to 59 and 30 to 39 hours, respectively. Blood glucose and plasma C-peptide concentrations were significantly lower with RA15127343 (single/repeated doses) versus vehicle. CONCLUSIONS: RA15127343 showed an ultra-long t1/2 with a slow onset of action. The preclinical pharmacological outcomes suggest RA15127343 could be a potential ultralong-acting insulin analogue with low risk of hypoglycaemia in humans.


Assuntos
Glicemia , Hipoglicemiantes , Animais , Feminino , Suínos , Humanos , Ratos , Glicemia/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Peptídeo C , Porco Miniatura/metabolismo , Insulina de Ação Prolongada , Insulina/farmacologia
5.
Anal Bioanal Chem ; 414(1): 251-256, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34505166

RESUMO

The therapeutic dose of lithium (Li) compounds, which are widely used for the treatment of psychiatric and hematologic disorders, is close to its toxic level; therefore, drug monitoring protocols are mandatory. Herein, we propose a fast, simple, and low-cost analytical procedure for the traceable determination of Li concentration in human serum, based on the monitoring of the Li isotope dilution through the partially resolved isotope shift in its electronic transition around 670.80 nm using a commercially available high-resolution continuum source graphite furnace atomic absorption spectrometer. With this technique, serum samples only require acidic digestion before analysis. The procedure requires three measurements-an enriched 6Li spike, a mixture of a certified standard solution and spike, and a mixture of the sample and spike with a nominal 7Li/6Li ratio of 0.82. Lanthanum has been used as an internal spectral standard for wavelength correction. The spectra are described as the linear superposition of the contributions of the respective isotopes, each consisting of a spin-orbit doublet, which can be expressed as Gaussian components with constant spectral position and width and different relative intensity, reflecting the isotope ratio in the sample. Both the spectral constants and the correlation between isotope ratio and relative band intensity have been experimentally obtained using commercially available materials enriched with Li isotopes. The Li characteristic mass (mc) obtained corresponds to 0.6 pg. The procedure has been validated using five human serum certified reference materials. The results are metrologically comparable and compatible to the certified values. The measurement uncertainties are comparable to those obtained by the more complex and expensive technique, isotope dilution mass spectrometry.


Assuntos
Antidepressivos/sangue , Compostos de Lítio/sangue , Espectrofotometria Atômica/métodos , Humanos
6.
Anal Chem ; 93(15): 6019-6024, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33835771

RESUMO

A combination of acoustic levitation, laser vaporization, and atmospheric pressure chemical ionization mass spectrometry (APCI-MS) is presented in this study that enabled sensitive analysis of pharmaceutical drugs from an aqueous sample matrix. An unfocused pulsed infrared laser provided contactless sample desorption from the droplets trapped inside an acoustic levitator by activation of the OH stretching band of aqueous and alcoholic solvents. Subsequent atmospheric pressure chemical ionization was used between the levitated droplet and the mass spectrometer for postionization. In this setup, the unfocused laser gently desorbed the analytes by applying very mild repulsive forces. Detailed plume formation studies by temporally resolved schlieren experiments were used to characterize the liquid gas transition in this process. In addition, the role of different additives and solvent composition was examined during the ionization process. The analytical application of the technique and the proof-of-concept for quantitative analysis were demonstrated by the determination of selected pharmaceutical drugs in aqueous matrix with limits of quantification at the lower nanomolar level and a linear dynamic range of 3-4 orders of magnitude.


Assuntos
Pressão Atmosférica , Preparações Farmacêuticas , Acústica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Água
7.
Anal Chem ; 93(29): 10022-10030, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34232608

RESUMO

An alternative method for lithium isotope amount ratio analysis based on a combination of high-resolution atomic absorption spectrometry and spectral data analysis by machine learning (ML) is proposed herein. It is based on the well-known isotope shift of approximately 15 pm for the electronic transition 22P←22S at around the wavelength of 670.8 nm, which can be measured by the state-of-the-art high-resolution continuum source graphite furnace atomic absorption spectrometry. For isotope amount ratio analysis, a scalable tree boosting ML algorithm (XGBoost) was employed and calibrated using a set of samples with 6Li isotope amount fractions, ranging from 0.06 to 0.99 mol mol-1, previously determined by a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS). The calibration ML model was validated with two certified reference materials (LSVEC and IRMM-016). The procedure was applied toward the isotope amount ratio determination of a set of stock chemicals (Li2CO3, LiNO3, LiCl, and LiOH) and a BAM candidate reference material NMC111 (LiNi1/3Mn1/3Co1/3O2), a Li-battery cathode material. The results of these determinations were compared with those obtained by MC-ICP-MS and found to be metrologically comparable and compatible. The residual bias was -1.8‰, and the precision obtained ranged from 1.9 to 6.2‰. This precision was sufficient to resolve naturally occurring variations, as demonstrated for samples ranging from approximately -3 to +15‰. To assess its suitability to technical applications, the NMC111 cathode candidate reference material was analyzed using high-resolution continuum source atomic absorption spectrometry with and without matrix purification. The results obtained were metrologically compatible with each other.


Assuntos
Isótopos , Lítio , Fontes de Energia Elétrica , Aprendizado de Máquina , Espectrofotometria Atômica
8.
Anal Chem ; 93(12): 5009-5014, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33729743

RESUMO

Concomitant species that appear at the same or very similar times in a mass-spectral analysis can clutter a spectrum because of the coexistence of many analyte-related ions (e.g., molecular ions, adducts, fragments). One method to extract ions stemming from the same origin is to exploit the chemical information encoded in the time domain, where the individual temporal appearances inside the complex structures of chronograms or chromatograms differ with respect to analytes. By grouping ions with very similar or identical time-domain structures, single-component mass spectra can be reconstructed, which are much easier to interpret and are library-searchable. While many other approaches address similar objectives through the Pearson's correlation coefficient, we explore an alternative method based on a modified cross-correlation algorithm to compute a metric that describes the degree of similarity between features inside any two ion chronograms. Furthermore, an automatic workflow was devised to be capable of categorizing thousands of mass-spectral peaks into different groups within a few seconds. This approach was tested with direct mass-spectrometric analyses as well as with a simple, fast, and poorly resolved LC-MS analysis. Single-component mass spectra were extracted in both cases and were identified based on accurate mass and a mass-spectral library search.

9.
Anal Chem ; 91(9): 5922-5928, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30933486

RESUMO

An airborne high repetition rate laser-induced plasma was applied as a versatile ambient ionization source for mass-spectrometric determinations of polar and nonpolar analytes in solution. The laser plasma was sustained between a home-built pneumatic nebulizer and the inlet capillary of an Orbitrap mass spectrometer. To maintain stable conditions in the droplet-rich spray environment, the plasma was directly fed by the fundamental output (λ = 1064 nm) of a current state-of-the-art diode-pumped solid-state laser. Ionization by the laser-driven plasma resulted in signals of intact analyte ions of several chemical categories. The analyte ions were found to be fully desolvated since no further increase in ion signal was observed upon heating of the inlet capillary. Due to the electroneutrality of the plasma, both positive and negative analyte ions could be formed simultaneously without altering the operational parameters of the ion source. While, typically, polar analytes with pronounced gas phase basicities worked best, nonpolar and amphoteric compounds were also detected. The latter were detected with lower ion signals and were prone to a certain degree of fragmentation induced during the ionization process. All the described attests the laser-induced microplasma by a good performance in terms of stability, robustness, sensitivity, and general applicability as a self-contained ion source for the liquid sample introduction.

10.
Anal Bioanal Chem ; 411(30): 8053-8061, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31741006

RESUMO

Acoustically levitated droplets have been suggested as compartmentalized, yet wall-less microreactors for high-throughput reaction optimization purposes. The absence of walls is envisioned to simplify up-scaling of the optimized reaction conditions found in the microliter volumes. A consequent pursuance of high-throughput chemistry calls for a fast, robust and sensitive analysis suited for online interrogation. For reaction optimization, targeted analysis with relatively low sensitivity suffices, while a fast, robust and automated sampling is paramount. To follow this approach, in this contribution, a direct coupling of levitated droplets to a homebuilt ion mobility spectrometer (IMS) is presented. The sampling, transfer to the gas phase, as well as the ionization are all performed by a single exposure of the sampling volume to the resonant output of a mid-IR laser. Once formed, the nascent spatially and temporally evolving analyte ion cloud needs to be guided out of the acoustically confined trap into the inlet of the ion mobility spectrometer. Since the IMS is operated at ambient pressure, no fluid dynamic along a pressure gradient can be employed. Instead, the transfer is achieved by the electrostatic potential gradient inside a dual ring electrode ion optics, guiding the analyte ion cloud into the first stage of the IMS linear drift tube accelerator. The design of the appropriate atmospheric pressure ion optics is based on the original vacuum ion optics design of Wiley and McLaren. The obtained experimental results nicely coincide with ion trajectory calculations based on a collisional model. Graphical Abstract.

11.
J Biochem Mol Toxicol ; 33(8): e22345, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31066974

RESUMO

For fasiglifam (TAK875) and its metabolites the substance-specific mechanisms of liver toxicity were studied. Metabolism studies were run to identify a putatively reactive acyl glucuronide metabolite. In vitro cytotoxicity and caspase 3/7 activation were assessed in primary human and dog hepatocytes in 2D and 3D cell culture. Involvement of glutathione (GSH) detoxication system in mediating cytotoxicity was determined by assessing potentiation of cytotoxicity in a GSH depleted in vitro system. In addition, potential mitochondrial liabilities of the compounds were assessed in a whole-cell mitochondrial functional assay. Fasiglifam showed moderate cytotoxicity in human primary hepatocytes in the classical 2D cytotoxicity assays and also in the complex 3D human liver microtissue (hLiMT) after short-term treatment (24 hours or 48 hours) with TC50 values of 56 to 68 µM (adenosine triphosphate endpoint). The long-term treatment for 14 days in the hLiMT resulted in a slight TC50 shift over time of 2.7/3.6 fold lower vs 24-hour treatment indicating possibly a higher risk for cytotoxicity during long-term treatment. Cellular GSH depletion and impairment of mitochondrial function by TAK875 and its metabolites evaluated by Seahorse assay could not be found being involved in DILI reported for TAK875. The acyl glucuronide metabolites of TAK875 have been finally identified to be the dominant reason for liver toxicity.


Assuntos
Benzofuranos/toxicidade , Ácidos Graxos não Esterificados/metabolismo , Fígado/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Sulfonas/toxicidade , Animais , Benzofuranos/metabolismo , Células Cultivadas , Cães , Glutationa/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Sulfonas/metabolismo
12.
Rapid Commun Mass Spectrom ; 32(7): 597-603, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29369442

RESUMO

RATIONALE: The most commonly used fragmentation methods in tandem mass spectrometry (MS/MS) are collision-induced dissociation (CID) and higher energy collisional dissociation (HCD). While in CID the preselected ions in the trap are resonantly (and m/z exclusively) excited, in HCD the entire m/z range experiences the dissociative acceleration. The different excitation is reflected in different fragment distributions. METHODS: As a test-bed for particularly pronounced fragmentation specificity, here MS/MS experiments on several 4-mer oligonucleotides were conducted employing both collision methods and the results were thoroughly compared. Oligonucleotides are shown to be sensitive probes to subtle changes, especially in the negative ion mode. A detailed analysis of these differences reveals insight into the dissociation mechanics. RESULTS: The differences are represented in heat-maps, which allow for a direct visual inspection of large amounts of data. In these false colour representations the, sometimes subtle, changes in the individual dissociation product distributions become distinct. Another advantage of these graphic plots can be found in the formation of systematic patterns. These patterns reflect trends in dissociation specificity which allow for the formulation of general rules in fragmentation behavior. CONCLUSIONS: Instruments equipped with two different excitation schemes for MS/MS are today widely available. Nonetheless, direct comparisons between the individual results are scarcely made. Such comparative studies bear a powerful analytical potential to elucidate fragmentation reaction mechanism.

13.
J Chem Phys ; 148(20): 204309, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29865822

RESUMO

Selected resonance states of the deuterated formyl radical in the electronic ground state X̃ 2A' are computed using our recently introduced dynamically pruned discrete variable representation [H. R. Larsson, B. Hartke, and D. J. Tannor, J. Chem. Phys. 145, 204108 (2016)]. Their decay and asymptotic distributions are analyzed and, for selected resonances, compared to experimental results obtained by a combination of stimulated emission pumping and velocity-map imaging of the product D atoms. The theoretical results show good agreement with the experimental kinetic energy distributions. The intramolecular vibrational energy redistribution is analyzed and compared with previous results from an effective polyad Hamiltonian. Specifically, we analyzed the part of the wavefunction that remains in the interaction region during the decay. The results from the polyad Hamiltonian could mainly be confirmed. The C=O stretch quantum number is typically conserved, while the D-C=O bend quantum number decreases. Differences are due to strong anharmonic coupling such that all resonances have major contributions from several zero-order states. For some of the resonances, the coupling is so strong that no further zero-order states appear during the dynamics in the interaction region, even after propagating for 300 ps.

14.
Eur J Mass Spectrom (Chichester) ; 24(2): 225-230, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29228798

RESUMO

Mass spectrometry is applied as a tool for the elucidation of molecular structures. This premises that gas-phase structures reflect the original geometry of the analytes, while it requires a thorough understanding and investigation of the forces controlling and affecting the gas-phase structures. However, only little is known about conformational changes of oligonucleotides in the gas phase. In this study, a series of multiply charged DNA oligonucleotides (n = 15-40) has been subjected to a comprehensive tandem mass spectrometric study to unravel transitions between different ionic gas-phase structures. The nucleobase sequence and the chain length were varied to gain insights into their influence on the geometrical oligonucleotide organization. Altogether, 23 oligonucleotides were analyzed using collision-induced fragmentation. All sequences showed comparable correlation regarding the characteristic collision energy. This value that is also a measure for stability, strongly correlates with the net charge density of the precursor ions. With decreasing charge of the oligonucleotides, an increase in the fragmentation energy was observed. At a distinct charge density, a deviation from linearity was observed for all studied species, indicating a structural reorganization. To corroborate the proposed geometrical change, collisional cross-sections of the oligonucleotides at different charge states were determined using ion mobility-mass spectrometry. The results clearly indicate that an increase in charge density and thus Coulomb repulsion results in the transition from a folded, compact form to elongated structures of the precursor ions. Our data show this structural transition to depend mainly on the charge density, whereas sequence and size do not have an influence.


Assuntos
DNA/química , Oligonucleotídeos/química , Íons/química , Transição de Fase , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
15.
Anal Chem ; 89(6): 3437-3444, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28221028

RESUMO

An airborne laser plasma is suggested as an ambient ion source for mass spectrometry. Its fundamental physical properties, such as an excellent spatial and temporal definition, high electron and ion densities and a high effective cross section in maintaining the plasma, make it a promising candidate for future applications. For deeper insights into the plasma properties, the optical plasma emission is examined and compared to mass spectra. The results show a seemingly contradictory behavior, since the emitted light reports the plasma to almost entirely consist of hot elemental ions, while the corresponding mass spectra exhibit the formation of intact molecular species. Further experiments, including time-resolved shadowgraphy, spatially resolved mass spectrometry, as well as flow-dependent emission spectroscopy and mass spectrometry, suggest the analyte molecules to be formed in the cold plasma vicinity upon interaction with reactive species formed inside the hot plasma center. Spatial separation is maintained by concentrically expanding pressure waves, inducing a strong unidirectional diffusion. The accompanying rarefaction inside the plasma center can be compensated by a gas stream application. This replenishing results in a strong increase in emission brightness, in local reactive species concentration, and eventually in direct mass spectrometric sensitivity. To determine the analytical performance of the new technique, a comparison with an atmospheric pressure chemical ionization (APCI) source was conducted. Two kitchen herbs, namely, spearmint and basil, were analyzed without any sample pretreatment. The presented results demonstrate a considerably higher sensitivity of the presented laser-spark ionization technique.

16.
Methods ; 104: 3-10, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26851554

RESUMO

Most ambient sample introduction and ionization techniques for native mass spectrometry are highly selective for polar agents. To achieve a more general sensitivity for a wider range of target analytes, a novel laser ablation dielectric barrier discharge (LA DBD) ionization scheme was developed. The approach employs a two-step mechanism with subsequent sample desorption and post-ionization. Effective ablation was achieved by the second harmonic output (λ=532nm) of a diode pumped Nd:YVO4 laser operating at a high-repetition rate of several kHz and pulse energies below 100µJ. The ejected analyte-containing aerosol was consecutively vaporized and ionized in the afterglow of a DBD plasma jet. Depending on their proton affinity the superexcited helium species in this afterglow produced analyte ions as protonated and ammoniated species, as well as radical cations. The optimization procedure could corroborate underlying conceptual consideration on the ablation, desorption and ionization mechanisms. A successful detection of a variety of target molecules could be shown from the pharmaceutical ibuprofen, urea, the amino acids l-arginine, l-lysine, the polymer polyethylene glycol, the organometallic compound ferrocene and the technical mixture wild mint oil. For a reliable evaluation of the introduced detection procedure spectra from the naturally abundant alkaloid capsaicin in dried capsicum fruits were recorded.


Assuntos
Íons/química , Terapia a Laser/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Aminoácidos/química , Aminoácidos/isolamento & purificação , Líquidos Corporais/química , Hélio/química , Humanos , Ibuprofeno/química , Ibuprofeno/isolamento & purificação , Prótons , Ureia/química , Ureia/isolamento & purificação
17.
J Biol Chem ; 290(47): 28446-28455, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26459563

RESUMO

The activation of the transcription factor NF-E2-related factor 2 (Nrf2) maintains cellular homeostasis in response to oxidative stress by the regulation of multiple cytoprotective genes. Without stressors, the activity of Nrf2 is inhibited by its interaction with the Keap1 (kelch-like ECH-associated protein 1). Here, we describe (3S)-1-[4-[(2,3,5,6-tetramethylphenyl) sulfonylamino]-1-naphthyl]pyrrolidine-3-carboxylic acid (RA839), a small molecule that binds noncovalently to the Nrf2-interacting kelch domain of Keap1 with a Kd of ∼6 µM, as demonstrated by x-ray co-crystallization and isothermal titration calorimetry. Whole genome DNA arrays showed that at 10 µM RA839 significantly regulated 105 probe sets in bone marrow-derived macrophages. Canonical pathway mapping of these probe sets revealed an activation of pathways linked with Nrf2 signaling. These pathways were also activated after the activation of Nrf2 by the silencing of Keap1 expression. RA839 regulated only two genes in Nrf2 knock-out macrophages. Similar to the activation of Nrf2 by either silencing of Keap1 expression or by the reactive compound 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid methyl ester (CDDO-Me), RA839 prevented the induction of both inducible nitric-oxide synthase expression and nitric oxide release in response to lipopolysaccharides in macrophages. In mice, RA839 acutely induced Nrf2 target gene expression in liver. RA839 is a selective inhibitor of the Keap1/Nrf2 interaction and a useful tool compound to study the biology of Nrf2.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Pirrolidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Proteína 1 Associada a ECH Semelhante a Kelch , Masculino , Camundongos , Ligação Proteica , Pirrolidinas/metabolismo , Sulfonamidas/metabolismo
18.
Anal Bioanal Chem ; 408(23): 6259-68, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27370689

RESUMO

The novel combination of infrared matrix-assisted laser dispersion and ionization (IR-MALDI) with ion mobility (IM) spectrometry makes it possible to investigate biomolecules in their natural environment, liquid water. As an alternative to an ESI source, the IR-MALDI source was implemented in an in-house-developed ion mobility (IM) spectrometer. The release of ions directly from an aqueous solution is based on a phase explosion, induced by the absorption of an IR laser pulse (λ = 2.94 µm, 6 ns pulse width), which disperses the liquid as nano- and micro-droplets. The prerequisites for the application of IR-MALDI-IM spectrometry as an analytical method are narrow analyte ion signal peaks for a high spectrometer resolution. This can only be achieved by improving the desolvation of ions. One way to full desolvation is to give the cluster ions sufficient time to desolvate. Two methods for achieving this are studied: the implementation of an additional drift tube, as in ESI-IM-spectrometry, and the delayed extraction of the ions. As a result of this optimization procedure, limits of detection between 5 nM and 2.5 µM as well as linear dynamic ranges of 2-3 orders of magnitude were obtained for a number of substances. The ability of this method to analyze simple mixtures is illustrated by the separation of two different surfactant mixtures.


Assuntos
Espectrometria de Mobilidade Iônica/instrumentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Desenho de Equipamento , Raios Infravermelhos , Espectrometria de Mobilidade Iônica/métodos , Íons/química , Lasers , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
19.
Eur J Mass Spectrom (Chichester) ; 22(3): 105-14, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27553731

RESUMO

A novel direct sampling ionisation scheme for ambient mass spectrometry is presented. Desorption and ionisation are achieved by a quasi-continuous laser induced plasma in air. Since there are no solid or liquid electrodes involved the ion source does not suffer from chemical interferences or fatigue originating from erosive burning or from electrode consumption. The overall plasma maintains electro-neutrality, minimising charge effects and accompanying long term drift of the charged particles trajectories. In the airborne plasma approach the ambient air not only serves as the plasma medium but at the same time also slows down the nascent ions via collisional cooling. Ionisation of the analyte molecules does not occur in the plasma itself but is induced by interaction with nascent ionic fragments, electrons and/or far ultraviolet photons in the plasma vicinity. At each individual air-spark an audible shockwave is formed, providing new reactive species, which expands concentrically and, thus, prevents direct contact of the analyte with the hot region inside the plasma itself. As a consequence the interaction volume between plasma and analyte does not exceed the threshold temperature for thermal dissociation or fragmentation. Experimentally this indirect ionisation scheme is demonstrated to be widely unspecific to the chemical nature of the analyte and to hardly result in any fragmentation of the studied molecules. A vast ensemble of different test analytes including polar and non-polar hydrocarbons, sugars, low mass active ingredients of pharmaceuticals as well as natural biomolecules in food samples directly out of their complex matrices could be shown to yield easily accessible yet meaningful spectra. Since the plasma medium is humid air, the chemical reaction mechanism of the ionisation is likely to be similar to other ambient ionisation techniques. Wir stellen hier eine neue Ionisationsmethode für die Umgebungsionisation (ambient ionisation) vor. Sowohl die Desorption als auch die Ionisation erfolgen hierbei durch ein laserbetriebenes Luftplasma. Die Abwesenheit fester oder flüssiger Elektroden hat zur Folge, dass die Methode weder unter chemischen Interferenzen noch unter Verschleiß durch Korrosionsbrand oder abgetragenes Elektrodenmaterial leidet. Insgesamt betrachtet herrscht in dem Plasma Elektroneutralität, wodurch Aufladungseffekte minimiert werden, die andernfalls zu einer langfristigenÄderung der Flugbahnen von Ionen während der Experimente führen kann. In dem Ansatz eine freischwebende Luftentladung bei Atmosphärendruck zu verwenden agiert die Luft nicht nur als Plasmamedium sondert dient zusätzlich als Badgas für die stoßinduzierte Kühlung der entstehenden Ionen. Die Ionisierung der Analytmoleküle erfolgt nicht unmittelbar im Plasma sondern in dessen direkter Umgebung durch Wechselwirkung mit freigesetzten ionischen Luftspezies, freien Elektronen oder Photonen im kurzwelligen ultravioletten Bereich. Jede Laserentladung erzeugt eine hörbare Stoßwelle, in welcher neu produzierte reaktive Spezies freigesetzt werden, welche sich konzentrisch ausbreiten, so dass eine Diffusion der Analytmoleküle ins heiße Innere des Plasmas verhindert wird. Daraus folgt, dass im Interaktionsvolumen zwischen Plasma und Analyt der Temperaturgrenzwert für eine thermische Dissoziation oder Fragmentierung der Moleküle nicht überschritten wird. Experimentell konnte belegt werden, dass das vorgestellte Ionisierungsschema sehr unselektiv bezüglich der chemischen Analytklasse ist und kaum Fragmentierungsprodukte beobachtet werden können. Messungen einer breitgefächerten Auswahl unterschiedlicher Testsubstanzen, wie beispielsweise polarer und unpolarer Kohlenwasserstoffe, Zuckern, niedermolekularer pharmazeutischer Wirkstoffe, sowie natürlicher Biomoleküle in Lebensmittelproben unmittelbar aus ihren komplexen Matrizes, führten zu aussagekräftigen Massenspektren. Zumal das Lasermedium feuchte Luft ist, scheint der Reaktionsmechanismus dem anderer Atmosphärendruckionisierungsmethoden zuähneln.

20.
Anal Chem ; 87(19): 10131-7, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26402464

RESUMO

Recently, the detection of molecular species in laser-induced breakdown spectroscopy (LIBS) has gained increasing interest, particularly for isotopic analysis. In LIBS of organic materials, it is predominantly CN and C2 species that are formed, and multiple mechanisms may contribute to their formation. To gain deeper insight into the formation of these species, laser-induced plasma of (13)C and (15)N labeled organic materials was investigated in a temporally and spatially resolved manner. LIBS on fumaric acid with a (13)C labeled double bond allowed the formation mechanism of C2 to be investigated by analyzing relative signal intensities of (12)C2, (12)C(13)C, and (13)C2 molecules. In the early plasma (<5 µs), the majority of C2 originates from association of completely atomized target molecules, whereas in the late plasma, the increased concentration of (13)C2 is due to incomplete dissociation of the carbon double bond. The degree of this fragmentation was found to be up to 80% and to depend on the type of the atmospheric gas. Spatial distributions of C2 revealed distinct differences for plasma generated in nitrogen and argon. A study of the interaction of ablated organics with ambient nitrogen showed that the ambient nitrogen contributed mainly to CN formation. The pronounced anisotropy of the C(15)N to C(14)N ratio across the diameter of the plasma was observed in the early plasma, indicating poor initial mixing of the plasma with the ambient gas. Overall, for accurate isotope analysis of organics, LIBS in argon with relatively short integration times (<10 µs) provides the most robust results. On the other hand, if information about the original molecular structure is of interest, then experiments in nitrogen (or air) with long integration times appear to be the most promising.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA