Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pflugers Arch ; 476(4): 505-516, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448727

RESUMO

The sodium/proton exchanger isoform 3 (NHE3) is expressed in the intestine and the kidney, where it contributes to hydrogen secretion and sodium (re)absorption. The roles of this transporter have been studied by the use of the respective knockout mice and by using pharmacological inhibitors. Whole-body NHE3 knockout mice suffer from a high mortality rate (with only ∼30% of mice surviving into adulthood), and based on the expression of NHE3 in both intestine and kidney, some conclusions that were originally derived were based on this rather complex phenotype. In the last decade, more refined models have been developed that added temporal and spatial control of NHE3 expression. For example, novel mouse models have been developed with a knockout of NHE3 in intestinal epithelial cells, tubule/collecting duct of the kidney, proximal tubule of the kidney, and thick ascending limb of the kidney. These refined models have significantly contributed to our understanding of the role of NHE3 in a tissue/cell type-specific manner. In addition, tenapanor was developed, which is a non-absorbable, intestine-specific NHE3 inhibitor. In rat and human studies, tenapanor lowered intestinal Pi uptake and was effective in lowering plasma Pi levels in patients on hemodialysis. Of note, diarrhea is seen as a side effect of tenapanor (with its indication for the treatment of constipation) and in intestine-specific NHE3 knockout mice; however, effects on plasma Pi were not supported by this mouse model which showed enhanced and not reduced intestinal Pi uptake. Further studies indicated that the gut microbiome in mice lacking intestinal NHE3 resembles an intestinal environment favoring the competitive advantage of inflammophilic over anti-inflammatory species, something similar seen in patients with inflammatory bowel disease. This review will highlight recent developments and summarize newly gained insight from these refined models.


Assuntos
Isoquinolinas , Trocadores de Sódio-Hidrogênio , Sódio , Sulfonamidas , Animais , Humanos , Camundongos , Ratos , Camundongos Knockout , Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo
2.
Kidney Int ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089578

RESUMO

The sodium/proton exchanger-3 (NHE3) plays a major role in acid-base and extracellular volume regulation and is also implicated in calcium homeostasis. As calcium and phosphate balances are closely linked, we hypothesized that there was a functional link between kidney NHE3 activity, calcium, and phosphate balance. Therefore, we examined calcium and phosphate homeostasis in kidney tubule-specific NHE3 knockout mice (NHE3loxloxPax8 mice). Compared to controls, these knockout mice were normocalcemic with no significant difference in urinary calcium excretion or parathyroid hormone levels. Thiazide-induced hypocalciuria was less pronounced in the knockout mice, in line with impaired proximal tubule calcium transport. Knockout mice had greater furosemide-induced calciuresis and distal tubule calcium transport pathways were enhanced. Despite lower levels of the sodium/phosphate cotransporters (NaPi)-2a and -2c, knockout mice had normal plasma phosphate, sodium-dependent 32Phosphate uptake in proximal tubule membrane vesicles and urinary phosphate excretion. Intestinal phosphate uptake was unchanged. Low dietary phosphate reduced parathyroid hormone levels and increased NaPi-2a and -2c abundances in both genotypes, but NaPi-2c levels remained lower in the knockout mice. Gene expression profiling suggested proximal tubule remodeling in the knockout mice. Acutely, indirect NHE3 inhibition using the SGLT2 inhibitor empagliflozin did not affect urinary calcium and phosphate excretion. No differences in femoral bone density or architecture were detectable in the knockout mice. Thus, a role for kidney NHE3 in calcium homeostasis can be unraveled by diuretics, but NHE3 deletion in the kidneys has no major effects on overall calcium and phosphate homeostasis due, at least in part, to compensating mechanisms.

3.
Sci Rep ; 14(1): 16997, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043847

RESUMO

Vitamin D3 is clinically used for the treatment of vitamin D3 deficiency or osteoporosis, partially because of its role in regulating phosphate (Pi) and calcium (Ca2+) homeostasis. The renal sodium-phosphate cotransporter 2a (Npt2a) plays an important role in Pi homeostasis; however, the role of vitamin D3 in hypophosphatemia has never been investigated. We administered vehicle or vitamin D3 to wild-type (WT) mice or hypophosphatemic Npt2a-/- mice. In contrast to WT mice, vitamin D3 treatment increased plasma Pi levels in Npt2a-/- mice, despite similar levels of reduced parathyroid hormone and increased fibroblast growth factor 23. Plasma Ca2+ was increased ~ twofold in both genotypes. Whereas WT mice were able to increase urinary Pi and Ca2+/creatinine ratios, in Npt2a-/- mice, Pi/creatinine was unchanged and Ca2+/creatinine drastically decreased, coinciding with the highest kidney Ca2+ content, highest plasma creatinine, and greatest amount of nephrocalcinosis. In Npt2a-/- mice, vitamin D3 treatment completely diminished Npt2c abundance, so that mice resembled Npt2a/c double knockout mice. Abundance of intestinal Npt2b and claudin-3 (tight junctions protein) were reduced in Npt2a-/- only, the latter might facilitate the increase in plasma Pi in Npt2a-/- mice. Npt2a might function as regulator between renal Ca2+ excretion and reabsorption in response to vitamin D3.


Assuntos
Cálcio , Colecalciferol , Homeostase , Camundongos Knockout , Fosfatos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa , Animais , Fosfatos/metabolismo , Cálcio/metabolismo , Homeostase/efeitos dos fármacos , Camundongos , Colecalciferol/farmacologia , Colecalciferol/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Rim/metabolismo , Rim/efeitos dos fármacos , Fator de Crescimento de Fibroblastos 23 , Hormônio Paratireóideo/metabolismo , Masculino , Hipofosfatemia/metabolismo , Hipofosfatemia/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA